Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Piętak, A." wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
The demand analysis of the biogas plant with chp system on substrate, the aim to obtain required electrical and thermal power
Autorzy:
Piętak, A.
Meus, M.
Nitkiewicz, S.
Powiązania:
https://bibliotekanauki.pl/articles/246798.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
biogas
biogas plant
cogeneration
electrical power
renewable energy
thermal power
transportation
Opis:
Due to the ending resources of fossil fuels, as well as instability of the political situation on the world, especially in countries that are their main supplier, governments of poor countries in resources are forced to seek alternative sources of energy. Currently the most commonly used raw material to produce an electrical and thermal power in Poland are coal and lignite, However, in a result of an increase of their prices and an exacerbated by the EU of regulations about an emission of the greenhouse gas, emerged trends, that aim to transform the energy sector through the implementation of technologies based on alternative energy sources. The main focus is to put on renewable energy sources. The methodology, which is contained in this paper, presents a way to designation the demand of the biogas plant with CHP system on substrate of agricultural origin, the aim to obtain required electrical and thermal power. Moreover, the paper presents a simplified diagram of anaerobic fermentation, which is the basis of biogas production, as well as an illustrative diagram of a biogas plant with CHP system. In this paper also was mentioned the possibility of application biogas for transportation purposes.
Źródło:
Journal of KONES; 2012, 19, 3; 334-344
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The impact of the share of biogas in a supply dose on load parameters in the combustion chamber of a dual-fuel compression-ignition engine
Autorzy:
Wierzbicki, S.
Boruta, G.
Piętak, A.
Powiązania:
https://bibliotekanauki.pl/articles/243036.pdf
Data publikacji:
2016
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
biogas
gas
air mixture
λ ratio
compression-ignition engine
Opis:
The need to increase the share of renewable fuels in the general energy balance necessitates the search for new possibilities of their use. One such fuel is biogas, which is generated both as a result of natural processes occurring, e.g. in landfills, and can also be obtained from various biological materials in biogas plants. Because of its properties, biogas may be used to power spark-ignition engines. At the same time, in numerous scientific centres attempts are underway at using biogas to power compression-ignition engines. Due to the relatively high autoignition temperature of methane, which is the main component of biogas, it is necessary to use dual-fuel supply systems in CI engines. Providing fuel gas to such an engine in the form of biogas, which can have a varying chemical composition, considerably changes the conditions of combustion in the engine compartment, which affects both the performance of the engine as well as the emission of toxic compounds into the atmosphere. The present paper discusses the impact of supplying an engine with fuel gas, as well as of the composition of biogas, on the ratios describing the load in the combustion chamber of a dual-fuel compression-ignition engine. The calculations were conducted for a four-cylinder forced induction engine, assuming that the volume of the drawn gas and air mixture equals the volume of the drawn air during mono-fuel operation.
Źródło:
Journal of KONES; 2016, 23, 2; 407-414
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Test stand for a combined heat and power unit fed with alternative gas fuels
Autorzy:
Boruta, G.
Imiołek, M.
Piętak, A.
Powiązania:
https://bibliotekanauki.pl/articles/244809.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
power and heat cogeneration
piston combustion engine
gas fuel
biogas
Opis:
This paper presents the reasons for the development of gas-combined power and heat units and justification for testing the effect of the used gas fuel on the performance of such units. A PBCHP10VB CHP unit driven by a liquidcooled piston combustion engine adapted for feeding with gas fuels is described. The concept is presented for testing the effect of different gas fuel mixtures, including biogas, on this unit’s operation, mainly on the obtained electric power from the current generator and the temperature of the liquid cooling the driving engine heating up output water and on the composition of exhaust gas from this engine. A simple device for obtaining gas fuels containing different combustible gas mixtures is presented. The instruments used to check the composition of the obtained gas fuel and check exhaust gas from the engine are briefly described. The paper describes a test stand for testing the effect of different gas fuels on the operation of a PBCHP10VB gas CHP unit manufactured by Power Blessed Co., Ltd registered in Shanghai, constructed at the Department of Mechatronics and Technical and Information Technology Education of the Faculty of Technical Sciences at the University of Warmia and Mazury in Olsztyn.
Źródło:
Journal of KONES; 2013, 20, 4; 39-45
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biomass energy potential : green energy for the university of Warmia and Mazury in Olsztyn
Autorzy:
Górecki, R.
Piętak, A.
Meus, M.
Kozłowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/241599.pdf
Data publikacji:
2013
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
biomass
biogas
bio-gasworks
cogeneration
renewable energy sources
electrical energy
heat energy
gasification
Opis:
The combined production of electrical and heat energy is one of the preferred, by national policy, activities associated with energy production from renewable sources. The simultaneous generation of heat and electrical or mechanical energy during the same technological process is called cogeneration or combined heat and power, CHP. The presented methodological approach includes an analysis of the data recorded in the research stations and agricultural production stations owned and managed by the University of Warmia and Mazury (UWM) in Olsztyn, performed in order to determine the energy potential of biomass and other renewable energy sources (RES). Depending on the substrates available for UWM in Olsztyn, it is proposed to take a varied approach towards the use of RES by means of biotechnological and thermal biomass conversion. The first method is based on the production of biogas from biomass with the subsequent use of the generated biogas in the process of cogeneration. In the second method, heat energy generated by gasification in a syngas generator will be used for transformation with a Stirling’s engine into mechanical energy and finally into electrical (30%) and heat (60%) energy. The concept of a “Green University” is the result of the performed analyses.
Źródło:
Journal of KONES; 2013, 20, 4; 99-106
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of pilot charge size and biogas composition on the operating efficiency of a dual-fuel compression-ignition engine
Autorzy:
Wierzbicki, S.
Śmieja, M.
Mikulski, M.
Piętak, A.
Powiązania:
https://bibliotekanauki.pl/articles/243597.pdf
Data publikacji:
2014
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
CI engine
biogas
dual-fuel engine
pilot dose
efficiency of engine
Opis:
Reduction of greenhouse gases emissions into the atmosphere, as well as increasing the share of renewables in the overall energy balance, forces the search for new, alternative energy sources. One of the fuels, which presents high potential for combustion engines are biomethane or biogas, with methane as the main flammable component. Biogas can be obtained from different products and using a variety of technologies which results in its wide availability and relatively easy manufacture. The largest sources of biogas can be animal farms or sewage treatment plants and waste dumps in which significant quantities of biogas are obtained as a result of naturally occurring processes. Biogas can also be obtained from processing of energy crops or waste processing in agricultural, food and meat processing plants. In this article, the possibility of using biogas as a fuel for CI engines has been examined. In such engine, combustion of biogas (methane) requires the use of dual fuel supply system, in which in addition to methane, liquid fuel is injected into the combustion chamber, in order to initiate the self-ignition of gaseous fuel. The paper presents exemplary results of the impact of the proportion of different fuels and biogas composition on the efficiency of the engine work cycle.
Źródło:
Journal of KONES; 2014, 21, 3; 279-284
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies