Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "bilans radiacyjny" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Pochłanianie i wypromieniowanie energii słonecznej przez wybrane powierzchnie rolnicze
Solar energy absorption and emission trough selected agriculture surfaces
Autorzy:
Brys, K.
Powiązania:
https://bibliotekanauki.pl/articles/60440.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich PAN
Tematy:
promieniowanie sloneczne
bilans radiacyjny
laki
ugory
szata roslinna
bilans promieniowania
Opis:
Przeanalizowano wpływ szaty roślinnej na różnicowanie bilansu radiacyjnego powierzchni rolniczych. Pod uwagę wzięto dwie kontrastowe powierzchnie: trawiastą (łąka) i nieporośniętą roślinnością (stale przekopywany ugór). Opracowano materiał pomiarowy z badań aktynometrycznych prowadzonych w roku 2009 w Obserwatorium Agro- i Hydrometeorologii Uniwersytetu Przyrodniczego Wrocław-Swojec. Wykorzystano dane pochodzące z ciągłej rejestracji gęstości strumienia całkowitego promieniowania słonecznego K↓, gęstości strumienia promieniowania odbitego od powierzchni trawy i ugoru K↑, gęstości strumienia promieniowania zwrotnego atmosfery L↓ i gęstości strumienia promieniowania powierzchni bez roślin i porośniętej trawą L↑. Kontrastowość cech fizycznobiologicznych rozpatrywanych dwóch powierzchni czynnych wpływa istotnie na różnicowanie ich właściwości radiacyjnych (absorpcyjnych i dystrybucyjnych). W efekcie występują wyraźne różnice w wartościach synchronicznych pomierzonych parametrów radiacyjnych tych powierzchni. Skoncentrowano się na ukazaniu tych różnic i ich przyczyn. Szczególną uwagę poświęcono różnicom w średnich wartościach dobowych i miesięcznych całkowitego bilansu promieniowania i jego najważniejszych składowych. Zwrócono uwagę na topoklimatyczne skutki zaobserwowanych różnic radiacyjnych.
There is analyzed plant cover impact on the differentiation of agriculture surfaces net radiation. Two contrasting surfaces: grass and bare soil are taken to consideration. There analysed data were collected from actinometrical measurements in 2009 in the Wroclaw-Swojec Agro- and Hydrometeorology Observatory belonging to Wrocław University of Environmental and Life Sciences. There are used data from permanent registration of flux intensity of: global solar radiation K↓, reflected solar radiation K↑, incoming long-wave radiation L↓ and outgoing long-wave radiation L↑. Contrasting physical and biological features of considered agriculture surfaces have an important influence on the differentiation of their radiation properties (absorption and emission). As a result there are legible differences in synchronically values of measured radiation parameters from these surfaces. The analysis were concentrated on showing these differences and their reason. Particular attention is paid on differences in daily and monthly global solar radiation averages and their the most important components. Topoclimatic effects of these radiation differences were discussed.
Źródło:
Infrastruktura i Ekologia Terenów Wiejskich; 2010, 08/1
1732-5587
Pojawia się w:
Infrastruktura i Ekologia Terenów Wiejskich
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bilans promieniowania w Koniczynce koło Torunia w latach 2011-2012
Radiation balance in Koniczynka near Torun in the years 2011-2012
Autorzy:
Kejna, M.
Uscka-Kowalkowska, J.
Arazny, A.
Powiązania:
https://bibliotekanauki.pl/articles/886370.pdf
Data publikacji:
2014
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
wies Koniczynka
bilans radiacyjny
promieniowanie krotkofalowe
promieniowanie dlugofalowe
monitoring srodowiska
Opis:
W artykule przedstawiono zmiany poszczególnych składowych bilansu radiacyjnego w cyklu rocznym i dobowym w Koniczynce k. Torunia w latach 2011–2012. Badania prowadzono za pomocą Net Radiometer CNR 4 fi rmy Kipp & Zonen nad powierzchnią trawiastą. W Koniczynce roczne sumy K↓ wyniosły 3901,1 MJ·m–2 w 2011 roku i 3840,1 MJ·m–2 w 2012 roku. Średnie miesięczne wartości albedo wahały się od 16 do 57%, przekraczając 80% w dniach z pokrywą śnieżną. Bilans promieniowania krótkofalowego (K*) sięgnął 3039,1 MJ·m–2 w 2011 roku i 3085,6 MJ·m–2 w 2012 roku. Wypromieniowanie długofalowe (L↑) z cieplejszej powierzchni ziemi było większe (11 431,5 MJ·m–2 w 2011 r. i 11 405,8 MJ·m–2 w 2012 r.) niż zwrotne promieniowanie długofalowe atmosfery (odpowiednio 10 032,8 i 10 050,4 MJ·m–2), stąd też bilans promieniowania długofalowego (L*) przyjął wartości ujemne (odpowiednio –1398,7 i –1355,4 MJ·m–2). Bilans radiacyjny (Q*) był ujemny w styczniu i lutym 2011 roku oraz w okresie od listopada 2011 do stycznia 2012 roku i w grudniu 2012 roku, przyjmując najmniejsze wartości w grudniu 2011 roku (–40,9 MJ·m–2). Największe wartości Q* osiągnął w czerwcu 2011 roku (386,4 MJ·m–2) i lipcu 2012 roku (341,1 MJ·m–2). W sumie w ciągu roku powierzchnia ziemi w Koniczynce otrzymała 1640,4 MJ·m–2 w 2011 roku i 1730,2 MJ·m–2 w 2012 roku. Bilans promieniowania w Koniczynce wykazuje cykliczność dobową i roczną zaburzaną przez zachmurzenie oraz parę wodną i aerozole.
This article describes changes in individual components of the solar radiation balance in an annual and diurnal course at Koniczynka near Toruń in the years 2011–2012. Observations were conducted on grass-covered surfaces, using a Kipp & Zonen CNR 4 net radiometer. At Koniczynka, the annual total incoming solar radiation (K↓) amounted to 3901.1 MJ·m–2 in 2011 and 3840.1 MJ·m–2in 2012. Mean monthly values of the albedo ranged from 16 to 57% and exceeded 80% when the ground was covered by snow. The short wave radiation balance (K*) reached 3039.1 MJ·m–2 in 2011 and 3085.6 MJ·m–2 in 2012. The upward long wave terrestrial radiation (L↑) emitted from warmer surfaces was greater (11,431.5 MJ.m–2 in 2011 and 11,405.8 MJ·m–2 in 2012) than the downward long wave atmospheric radiation (10,032.8 MJ·m–2 and 10,050.4 MJ·m–2, respectively), therefore the long wave radiation balance (L*) was negative (–1398.7 MJ·m–2 and –1355.4 MJ·m–2, respectively). The net radiation balance (Q*) was negative in January and February 2011, and from November 2011 until January 2012, as well as in December 2012, with the lowest values in December 2011 (–40.9 MJ·m–2). The highest values of Q* were observed in June 2011 (386.4 MJ·m–2) and July 2012 (341.1 MJ·m–2). All in all, the ground surface at Koniczynka received 1640.4 MJ·m–2 in 2011 and 1730.2 MJ·m–2 in 2012. The net radiation balance at Koniczynka follows a diurnal and an annual cycle, disturbed by cloudiness, water vapour and aerosols.
Źródło:
Scientific Review Engineering and Environmental Sciences; 2014, 23, 1[63]
1732-9353
Pojawia się w:
Scientific Review Engineering and Environmental Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bilans radiacyjny w rejonie Kaffioyry (NW Spitsbergen) w sezonie letnim 2010 roku
Radiation balance in the Kaffioyra region (NW Spitsbergen) in the summer season 2010
Autorzy:
Kejna, M.
Przybylak, R.
Araźny, A.
Powiązania:
https://bibliotekanauki.pl/articles/260983.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
bilans radiacyjny
promieniowanie słoneczne
promieniowanie atmosfery
promieniowanie ziemi
Spitsbergen
Kaffioyra
radiation balance
solar radiation
atmospheric radiation
long-wave radiation
Opis:
W artykule przedstawiono wyniki rejestracji składowych bilansu promieniowania na 3 stanowiskach: Kaffioyra-Heggodden (KH), Lodowiec Waldemara-czoło (LW1) i Lodowiec Waldemara-pole firnowe (NW Spitsbergen) w okresie od 16.07 do 31.08.2010 r. Pomiary prowadzono przy pomocy Radiometru CNR4 firmy Kipp&Zonen. Co minutę rejestrowano natężenie promieniowania słonecznego K?, promieniowania odbitego (K?), promieniowania ziemi (L?) i promieniowania zwrotnego atmosfery (L?). Na tej podstawie obliczono bilans radiacyjny (Q*), składający się z bilansu krótkofalowego (K*) i długofalowego (L*). Stwierdzono niewielkie różnice pomiędzy stanowiskami KH i LW2 założonymi na podłożu morenowym. Najmniej korzystny Q* wystąpił na LW2 nad powierzchnią śnieżno-lodowcową charakteryzującą się wysokim albedo. W artykule zbadano zróżnicowanie przestrzenne składowych bilansu radiacyjnego z dnia na dzień oraz w cyklu dobowym.
Measurements of radiation balance (Q*) were carried out in the Kaffioyra region (NW Spitsbergen) between 16 July and 31 August 2010 at three stations with different surfaces: KH on the glacial moraine of the Aavatsmark (11.5 m a.s.l.), LW1 - on the terminal moraine of the Waldemar Glacier (130 m a.s.l.), and LW2 - on the firn field of the Waldemar Glacier (375 m a.s.l.) - Fig. 1. A Kipp&Zonen CNR 4 Net Radiometer was used to register - minute by minute - the short wave radiation balance (K*), which is the difference between incoming solar radiation K? and reflected solar radiation (K?), and the long wave radiation balance (L*), which is the difference between downward long wave atmospheric radiation (L?) and upward long wave radiation (L?) - Table 1. In the studied period the maximum intensity of incoming solar radiation reached 709.4 W.m-2 at KH, 882.1 W.m-2 at LW1 and 836.2 W.m-2 at LW2. The mean diurnal sums of incoming solar radiation ranged from 11.04 MJ.m-2 at KH to 10.46 MJ.m-2 at LW1 and 10.60 MJ.m-2 at LW2 (Table 2, Fig. 2). The surface albedo varied, reaching between 13% (LW1) and 15% (KH) on the moraines, and up to 61% (LW2) on the firn field (Table 2, Fig. 3). Thus the lowest value of short wave radiation balance, +4.31 MJ.m-2, was registered at LW2, whereas it was doubled on the moraines: KH +9.50 MJ.m-2 and LW1 +9.09 MJ.m-2 (Table 4, Fig. 4). The flux of downward long wave atmospheric radiation coming from the atmosphere does not reveal any significant differences between individual stations: KH: 27.26 MJ.m-2, LW1: 27.47 MJ.m-2 and LW2 - 27.37 MJ.m-2 in 24h (Table 3). The Earth's surface (upward long wave radiation) was losing, on average: 30.31 MJ.m-2, 29.88 MJ.m-2 and 30.10 MJ.m-2, respectively, and the mean daily values of long wave radiation balance were negative: KH -3.05 MJ.m-2, LW1 -2.42 MJ.m-2 and LW2 -2.73 MJ.m-2. The surface radiation balance (Q*) was the most favourable on moraine bases: LW1 +6.67 MJ.m-2, KH +6.45 MJ.m-2, whereas the snow-covered firn field received the smallest amount of energy: LW2 +1.58 MJ.m-2 (Table 4, Fig. 5). In spite of the polar day, the diurnal cycle of the radiation balance components appears symmetrical with regard to the solar noon, related to the elevation of the sun over the horizon and the temperature of the surface and of the atmosphere. The flux of incoming solar radiation reached its peaks during midday hours with the following mean values: KH: 278.7 W.m-2, LW1: 275.9 W.m-2, and LW2: 295.2 W.m-2 (Fig. 6). At the time of lower culmination of the sun the values of K* were falling to zero. The balance of long wave radiation was negative and reached its highest values around midday hours (KH -50.0 MJ.m-2, LW1 -40.1 MJ.m-2 and LW2 -47.5 MJ.m-2). Q* was the highest in midday hours, when it was 2.5 times higher for moraine bases (KH +194.8 MJ.m-2 and LW1 +201.5 MJ.m-2) than for snow and glacial surfaces (LW2 +79.1 MJ.m-2). At low elevation of the sun Q* became negative: KH -6.8 MJ.m-2, LW1 -5.4 MJ.m-2 and LW2 -19.4 MJ.m-2. On individual days the diurnal cycle of the components of Q* was affected not only by the elevation of the sun, but also by the atmospheric state and the presence of clouds, in particular. For example, on 27 and 28 July 2010 a different weather types occurred (Table 5, Fig. 7). On the first day the sky was completely overcast with St and Sc clouds and no sunshine was observed. On the following day it cleared up with partial cloudiness (Cu, Ac, Ci), and the sunshine duration reached 16.2 h. On 27 July a slight influx of incoming solar radiation was registered (mean intensity 68.6 W.m-2, diurnal sum 5.92 MJ.m-2), K* was 5.14 MJ.m-2, and L* -0.84 MJ.m-2 due to the total cloudiness, which supported substantial downward atmospheric radiation (downward long wave atmospheric radiation 339.3 W.m-2). On the other hand, on 28 July, when the amount of cloudi-ness was moderate, the maximum intensity of incoming solar radiation was 668.7 W.m-2. In 24 hours the total radiation that reached the surface amounted to 22.04 MJ.m-2, and K* increased to 18.90 MJ.m-2. L* was negative (-5.26 MJ.m-2) due to substantial radial emittance of the ground (upward long wave radiation 352,0 W.m-2) and some downward atmospheric radiation (downward long wave atmospheric radiation 291.1 W.m-2). However, the overall radiation balance was three times higher than on 27 July and amounted to 13.65 MJ.m-2. In the studied period, the individual components of Q* were decreasing in value, as a result of the lower and lower elevation of the sun over the horizon and the ending of the polar day.
Źródło:
Problemy Klimatologii Polarnej; 2011, 21; 173-186
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badania na stacji terenowej Wydziału Geografii Uniwersytetu Lwowskiego na Roztoczu Południowym
The investigation at the Geographical Station of Lvov University in the Southern Roztocze
Autorzy:
Mucha, B.
Powiązania:
https://bibliotekanauki.pl/articles/85653.pdf
Data publikacji:
2006
Wydawca:
Polska Asocjacja Ekologii Krajobrazu
Tematy:
Ukraina
Uniwersytet Lwowski
Wydzial Geografii
stacje terenowe
Roztocze Wschodnie [geogr.]
badania naukowe
pomiary meteorologiczne
pomiary aktynometryczne
topoklimat
bilans radiacyjny
bilans wodny
bilans cieplny
Stacja Krajobrazowo-Geofizyczna Uniwersytetu Lwowskiego na Roztoczu Poludniowym
Źródło:
Problemy Ekologii Krajobrazu; 2006, 16, 1
1899-3850
Pojawia się w:
Problemy Ekologii Krajobrazu
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies