Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "przetwornik A/D" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Zastosowanie funkcji autokorelacji i skwantowanych danych do obliczania wariancji estymatora wartości oczekiwanej sygnału
Use of autocorrelation function and quantized data for determining the variance of the expected signal value estimator
Autorzy:
Kawecka, E.
Sienkowski, S.
Powiązania:
https://bibliotekanauki.pl/articles/158051.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
wartość oczekiwana
obciążenie
wariancja
funkcja autokorelacji
kwantowanie
przetwornik A/C
excepted value
bias
variance
autocorrelation function
quantization
A/D converter
Opis:
Celem pracy jest wyznaczenie rzeczywistej wariancji wartości oczekiwanej skwantowanego sygnału i porównanie takiej wariancji z estymatorami tej wielkości obliczanymi metodą klasyczną oraz na podstawie funkcji autokorelacji. W pracy zdefiniowano postać estymatora wartości oczekiwanej sygnału. Na tej podstawie wyznaczono jego wariancję. Do badań zastosowano skwantowane próbki sygnału oraz momenty zmiennej losowej. Założono, że próbki sygnału zostały skwantowane w przetworniku analogowo-cyfrowym (A-C) typu zaokrąglającego o idealnej charakterystyce kwantowania. W charakterze przykładu przedstawiono wyniki obliczeń wariancji dla sygnału sinusoidalnego, sygnałów losowych o rozkładach: równomiernym oraz Gaussa.
In the paper there is presented a way of determining the variance of the expected value estimator based on the signal autocorrelation function. The expected signal value estimator is defined and the estimator variance is determined. For investigations there were used quantized samples of signal and moments of random variable. There was assumed that the signal was sampled by an ideal AC round-off converter. As an example there are given the results of variance calculations for sinusoidal, Gaussian and uniform PDF (Probability Density Function) signals. The paper is divided into three paragraphs. Paragraph 1 comprises a brief introduction to the research problems. There is given a definition of the expected signal value estimator, calculated on the basis of quantized data (Eq. 2). There are defined the initial conditions allowing calculation of the estimator characteristics. In Paragraph 2 the variance (Eq. 3) of the estimator (Eq. 2) calculated on the basis of moments (Eq. 7) and the autocorrelation function (Eq. 8) are determined. There are also presented the definitions of variance estimators of the expected signal value estimator calculated with use of the classic method (Eq. 11) and autocorrelation function (Eq. 12). Because both estimators have bias, there are given definitions (Eq. 14, 15) for the case when only quantization has an influence on the variance bias. In subparagraphs 2.1 - 2.3 there are presented exemplary results of calculating the variance (Eq. 3) of the estimator (Eq. 2) for the examined signals. For each signal a definition of the characteristic function (Eq. 16, 19, 22) is given. On the basis of the characteristic function definitions, the detailed formulas (Eq. 17, 20, 23) calculated from the random variable moments are derived. (Fig. 1-3) shows charts of the variance. There are defined the formulas (Eq. 18, 21, 24) allowing calculations of the mean square error. Exemplary results are given in Tables 1 and 2. The investigation results are summarized in Paragraph 3. They show that the accuracy of calculation results of the expected signal value estimator variance obtained with use of the classic method and those from the autocorrelation function is the same.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 10, 10; 1119-1122
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena wpływu kwantowania na niepewność estymatora wartości oczekiwanej sygnału
Evaluation of quantization influence on the signal mean value estimator uncertainty
Autorzy:
Sienkowski, S.
Powiązania:
https://bibliotekanauki.pl/articles/153044.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
estymator wartości oczekiwanej
wariancja
obciążenie
niepewność
przetwornik A/C
mean value estimator
expected value
variance
bias
uncertainty
A/D converter
Opis:
Artykuł dotyczy problematyki oceny wpływu kwantowania na niepewność estymatora wartości oczekiwanej sygnału. Zdefiniowano postacie estymatorów wartości oczekiwanej oraz wariancji tego parametru. Wyznaczono obciążenia estymatorów. Oceniono wpływ kwantowania na niepewność estymatora wartości oczekiwanej. Do badań zastosowano skwantowane próbki sygnału oraz momenty zmiennej losowej. Konwersja sygnału przeprowadzono z zastosowaniem kwantyzatora typu zaokrąglającego o idealnej charakterystyce kwantowania.
The paper deals with the problem of evaluation of quantization influence on the signal mean value estimator uncertainty on the basis of digital measuring data. In order to evaluate the uncertainty ,there have been used the quantized samples and moments of a random variable as well as the Widrow theory of quantization. The round-off quantizer of the ideal quantizing characteristic has been applied. The paper is divided into four sections. In the first section there is given Eq. (2) describing the mean value estimator obtained from the quantized data. In the second section the bias of the mean value estimator is described by Eq. (5) and shown in Fig.1. The mean value estimator (2) with and without bias (5) is shown in Fig.2. The mean value estimator variance is given by Eq. (6) and shown in Fig.3. In the next section there are presented Eqs. (21)-(23) describing the quantization influence on the mean value estimator uncertainty obtained from the moments and quantized data. The quantization influence on the mean value estimator uncertainty is studied in two independent cases, with and without bias, and shown in Fig.6. It has been shown that for a sinusoidal signal Eq. (21) is a suppressed oscillating function of the amplitude. Moreover, it has been proved that by increasing the sample size Eqs. (22) and (23) can be brought to 1. In the last section the results of investigations are summarized.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 11, 11; 1311-1314
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies