Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Morka, A." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Numerical analysis of a multi - component ballistic panel
Autorzy:
Stanisławek, S.
Morka, A.
Niezgoda, T.
Powiązania:
https://bibliotekanauki.pl/articles/243005.pdf
Data publikacji:
2012
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
computational mechanics
ballistic protection
composite armour
ceramics
Opis:
The paper presents a numerical study of a two layer composite panel impacted by an AP (Armour Piercing) 14.5x118mm B32 projectile. The panel consists of a number of pyramid ceramic components supported by an aluminium plate. The studied model is compared with a reference structure in which ceramic layer is in a form of a plate. The problem has been solved with the usage of modelling and simulation methods as well as a finite elements method implemented in LS-DYNA software. Space discretization for each option was built with three dimension elements guaranteeing satisfying accuracy of the calculations. For material behaviour simulation, specific models including the influence of the strain rate and temperature changes were considered. A steel projectile and aluminium plate material were described by Johnson-Cook model and a ceramic target by Johnson-Holmquist model. In the studied panels, the area surrounding back edges was supported by a rigid wall. The obtained results show interesting properties of the examined structures considering their ballistic resistance. All tests have given clear results about ballistic protection panel response under AP projectile impact. Panels consisting of sets of pyramids are slightly easier to penetrate. Despite this fact, a ceramic layer is much less susceptible to overall destruction what makes it more applicable for the armour usage. Furthermore, a little influence of the projectile impact point and consequently a part of the pyramid, which is first destroyed, is proved.
Źródło:
Journal of KONES; 2012, 19, 4; 585-588
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical analysis of an influence of ceramic plate surrounding by metal components in a ballistic panel
Autorzy:
Stanisławek, S.
Morka, A.
Niezgoda, T.
Powiązania:
https://bibliotekanauki.pl/articles/247100.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
computational mechanics
ballistic protection
composite armour
ceramics
Opis:
The paper presents a numerical study of the three layer composite panels impacted by an AP (Armor Piercing) 7.62x51mm projectile. The standard panel is built with aluminum and Al2O3 ceramic plate. The studied model, however, consists of the same aluminum plate but the ceramic one is surrounded by a steel packet. The problem has been solved with the usage of the modelling and simulation methods as well as finite elements method implemented in LS-DYNA software. Space discretization for each option was built with three dimension elements guaranteeing satisfying accuracy of the calculations. For material behaviour simulation, specific models including the influence of the strain rate and temperature changes were considered. Steel projectile and aluminum plate material were described by Johnson-Cook model and ceramic target by Johnson-Holmquist model. In the studied panels, the area surrounding back edges was supported by a rigid wall. The obtained results show interesting properties of the new structures considering their ballistic resistance. The ballistic protection of a three layer panel under the WC projectile impact is indentified. Panels containing the ceramic plate surrounded at each side by a steel packet plate are stronger. However, this difference reaches only the level of 2.4% regardless erosion parameters. Definitely technological complication and an area density mass increase cannot balance a small improvement of ballistic protection. However, this kind of panel is not suggested as a useful solution. Further investigations are suggested in order to analyze an influence of initial ceramic compression. The results of those numerical simulations can be used for designing of modern armour protection systems against hard kinetic projectiles.
Źródło:
Journal of KONES; 2011, 18, 4; 471-474
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pyramidal ceramic armor ability to defeat projectile threat by changing its trajectory
Autorzy:
Stanislawek, S.
Morka, A.
Niezgoda, T.
Powiązania:
https://bibliotekanauki.pl/articles/202070.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
computational mechanics
ballistic protection
composite armor
ceramics
mechanika obliczeniowa
ochrona balistyczna
kompozytowy pancerz
ceramika
Opis:
This paper presents a numerical study of a multilayer composite panel impacted by an AP (Armor Piercing) 14.5×114 mm B32 projectile. The composite consists of alternating layers of hard ceramic and a ductile aluminum alloy. While the alloy layer consists of typical plate, ceramics confront projectiles in the form of ceramic pyramids. The studied models are compared with a reference structure, which is a standard double layer panel. The problem has been solved with the usage of modeling and simulation methods as well as a finite elements method implemented in LS-DYNA software. Space discretization for each option was built with three dimensional elements ensuring satisfying accuracy of the calculations. For material behavior simulation, specific models including the influence of the strain rate and temperature changes were considered. A steel projectile and aluminum plate material were described by the Johnson-Cook model and a ceramic target by the Johnson-Holmquist model. The obtained results indicate that examined structures can be utilized as a lightweight ballistic armor in certain conditions. However, panels consisting of sets of ceramic prisms are a little easier to penetrate. Despite this fact, a ceramic layer is much less susceptible to overall destruction, making it more applicable for the armor usage. What is most important in this study is that significant projectile trajectory deviation is detected, depending on the impact point. Such an effect may be utilized in solutions, where a target is situated relatively far from an armor.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2015, 63, 4; 843-849
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of two-component armour
Autorzy:
Kędzierski, P.
Morka, A.
Sławiński, G.
Niezgoda, T.
Powiązania:
https://bibliotekanauki.pl/articles/200962.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
optimization
composites
numerical simulations
ballistic protection
optymalizacja
kompozyty
symulacje numeryczne
ochrona balistyczna
Opis:
The paper presents research on optimization of two-layer armour subjected to the normal impact of the 7.62x54 B32 armour piercing (AP) projectile. There were analysed two cases in which alumina Al2O3 was supported by aluminium alloy AA2024-T3 or armour steel Armox 500T. The thicknesses of layers were determined to minimize the panel areal density whilst satisfying the constraint, which was the maximum projectile velocity after panel perforation. The problem was solved through the utilization of LS-DYNA, LS-OPT and HyperMorph engineering software. The axisymmetric model was applied to the calculation in order to provide sufficient discretization. The response of the aluminium alloy, armour steel and projectile material was described with the Johnson-Cook model, while the one of the alumina with the Johnson-Holmquist model. The study resulted in the development of a panel optimization methodology, which allows the layer thicknesses of the panel with minimum areal density to be determined. The optimization process demonstrated that the areal density of the lightest panel is 71.07 and 71.82 kg/m2 for Al2O3-Armox 500T and Al2O3-AA2024-T3, respectively. The results of optimization process were confirmed during the experimental investigation.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2015, 63, 1; 173--179
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies