Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "back-propagation neural network" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Non-Invasive Hemoglobin Monitoring Device Using K-Nearest Neighbor and Artificial Neural Network Back Propagation Algorithms
Autorzy:
Munadi, R.
Sussi, S.
Fitriyanti, N.
Ramadan, D. N.
Powiązania:
https://bibliotekanauki.pl/articles/2055237.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
invasive
non-invasive
k-nearest neighbor
artificial neural network
back propagation
Opis:
The invasive method of medically checking hemoglobin level in human body by taking the blood sample of the patient requiring a long time and injuring the patient is seen impractical. A non-invasive method of measuring hemoglobin levels, therefore, is made by applying the K-Nearest Neighbor (KNN) algorithm and the Artificial Neural Network Back Propagation (ANN-BP) algorithm with the Internet of Things-based HTTP protocol to achieve the high accuracy and the low end-to-end delay. Based on tests conducted on a Noninvasive Hemoglobin measuring device connected to Cloud Things Speak, the prediction process using algorithm by means of Python programming based on Android application could work well. The result of this study showed that the accuracy of the K-Nearest Neighbor algorithm was 94.01%; higher than that of the Artificial Neural Network Back Propagation algorithm by 92.45%. Meanwhile, the end-to-end delay was at 6.09 seconds when using the KNN algorithm and at 6.84 seconds when using Artificial Neural Network Back Propagation Algorithm.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 1; 13--18
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Photovoltaic power prediction based on improved grey wolf algorithm optimized back propagation
Autorzy:
He, Ping
Dong, Jie
Wu, Xiaopeng
Yun, Lei
Yang, Hua
Powiązania:
https://bibliotekanauki.pl/articles/27309934.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
BP neural network
photovoltaic power generation
PSO–GWO model
PSO–GWO–BP prediction model
particle swarm optimization
gray wolf optimization
back propagation
standard grey wolf algorithm
Opis:
At present, the back-propagation (BP) network algorithm widely used in the short-term output prediction of photovoltaic power stations has the disadvantage of ignoring meteorological factors and weather conditions in the input. The existing traditional BP prediction model lacks a variety of numerical optimization algorithms, such that the prediction error is large. The back-propagation (BP) neural network is easy to fall into local optimization thus reducing the prediction accuracy in photovoltaic power prediction. In order to solve this problem, an improved grey wolf optimization (GWO) algorithm is proposed to optimize the photovoltaic power prediction model of the BP neural network. So, an improved grey wolf optimization algorithm optimized BP neural network for a photovoltaic (PV) power prediction model is proposed. Dynamic weight strategy, tent mapping and particle swarm optimization (PSO) are introduced in the standard grey wolf optimization (GWO) to construct the PSO–GWO model. The relative error of the PSO–GWO–BP model predicted data is less than that of the BP model predicted data. The average relative error of PSO–GWO–BP and GWO–BP models is smaller, the average relative error of PSO–GWO–BP model is the smallest, and the prediction stability of the PSO–GWO–BP model is the best. The model stability and prediction accuracy of PSO–GWO–BP are better than those of GWO–BP and BP.
Źródło:
Archives of Electrical Engineering; 2023, 72, 3; 613--628
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies