- Tytuł:
- Application of machine learning and rough set theory in lean maintenance decision support system development
- Autorzy:
-
Antosz, Katarzyna
Jasiulewicz-Kaczmarek, Małgorzata
Paśko, Łukasz
Zhang, Chao
Wang, Shaoping - Powiązania:
- https://bibliotekanauki.pl/articles/2038009.pdf
- Data publikacji:
- 2021
- Wydawca:
- Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
- Tematy:
-
lean maintenance
availability
machine learning
decision trees
rough set theory - Opis:
- Lean maintenance concept is crucial to increase the reliability and availability of maintenance equipment in the manufacturing companies. Due the elimination of losses in maintenance processes this concept reduce the number of unplanned downtime and unexpected failures, simultaneously influence a company’s operational and economic performance. Despite the widespread use of lean maintenance, there is no structured approach to support the choice of methods and tools used for the maintenance function improvement. Therefore, in this paper by using machine learning methods and rough set theory a new approach was proposed. This approach supports the decision makers in the selection of methods and tools for the effective implementation of Lean Maintenance.
- Źródło:
-
Eksploatacja i Niezawodność; 2021, 23, 4; 695-708
1507-2711 - Pojawia się w:
- Eksploatacja i Niezawodność
- Dostawca treści:
- Biblioteka Nauki