- Tytuł:
- Extremal Irregular Digraphs
- Autorzy:
-
Górska, Joanna
Skupień, Zdzisław
Dziechcińska-Halamoda, Zyta
Majcher, Zofia
Michael, Jerzy - Powiązania:
- https://bibliotekanauki.pl/articles/31342278.pdf
- Data publikacji:
- 2018-08-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
irregular digraph
oriented graph
minimal subdigraph
maximal subdigraph
asymptotic size - Opis:
- A digraph is called irregular if its distinct vertices have distinct degree pairs. An irregular digraph is called minimal (maximal) if the removal of any arc (addition of any new arc) results in a non-irregular digraph. It is easily seen that the minimum sizes among irregular n-vertex whether digraphs or oriented graphs are the same and are asymptotic to $ (\sqrt{2} // 3) n^{3//2} $; maximum sizes, however, are asymptotic to $ n^2 $ and $ n^2 // 2 $, respectively. Let s stand for the sum of initial positive integers,$s = 1, 3, 6, .... $ An oriented graph $ H_s $ and a digraph $ F_s $, both large (in terms of the size), minimal irregular, and on any such s vertices, $ s \ge 21 $, are constructed in [Large minimal irregular digraphs, Opuscula Math. 23 (2003) 21–24], co-authored by Z. D-H. and three more of the present co-authors (Z.M., J.M., Z.S.). In the present paper we nearly complete these constructions. Namely, a large minimal irregular digraph $ F_n $, respectively oriented graph $ H_n $, are constructed for any of remaining orders $n$, $n > 21$, and of size asymptotic to $ n^2 $, respectively to $ n^2 // 2$. Also a digraph $ \Phi_n $ and an oriented graph $ G_n $, both small maximal irregular of any order $ n \ge 6 $, are constructed. The asymptotic value of the size of $ G_n $ is at least $ ( \sqrt{2} // 3) n^{3//2} $ and is just the least if $ n = s \rightarrow \infty $, but otherwise the value is at most four times larger and is just the largest if $ n = s − 1 \rightarrow \infty $. On the other hand, the size of $ \Phi_n $ is of the asymptotic order $ \Theta (n^{3//2} ) $.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2018, 38, 3; 791-800
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki