- Tytuł:
-
Modelowanie poboru wody w osiedlach mieszkaniowych
Water demand modeling for housing estates - Autorzy:
-
Cieżak, W.
Siwoń, Z.
Cieżak, J. - Powiązania:
- https://bibliotekanauki.pl/articles/237536.pdf
- Data publikacji:
- 2008
- Wydawca:
- Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
- Tematy:
-
sieć wodociągowa
pobór wody
sieć neuronowa
modelowanie
water supply system
water demand
artificial neural networks - Opis:
-
W pracy podano zasady wyznaczania i prognozowania histogramów chwilowego poboru wody w ciągu doby na przykładzie wydzielonych rejonów sieci wodociągowych we Wrocławiu i Kłodzku. Wykazano przydatność stosowania sztucznych sieci neuronowych w procesach kalibracji i weryfikacji modeli hydraulicznych oraz w dynamicznym modelowaniu przepływu wody w sieci wodociągowej. Przeprowadzona analiza skuteczności sztucznych sieci neuronowych w bieżącym prognozowaniu dobowych profili godzinowego poboru wody w osiedlach mieszkaniowych wykazała względnie dobrą jakość predykcji, porównywalną lub lepszą od jakości predykcji wg modeli klasy ARIMA i metod wykładniczego wygładzania szeregów czasowych. Wykazano, że optymalne struktury sieci perceptronowych nie są skomplikowane, przez co proces ich douczania lub uczenia od nowa nie wymaga długotrwałych obliczeń. W procedurach doboru tych struktur można ograniczyć opóźnienie do 5 d tego samego typu (dni robocze, soboty oraz niedziele i święta), liczbę warstw ukrytych do 1 oraz liczbę neuronów w warstwie ukrytej do 15. Sieci neuronowe mogą być wykorzystywane między innymi w procesach kalibracji modeli przepływu wody w systemach wodociągowych oraz w komputerowych badaniach symulacyjnych działania tych systemów. Doboru optymalnych struktur sieci można dokonać w oparciu o pakiety "Sieci neuronowe" programu STATISTICA (wersja od 6 do 8).
The principles of determining and forecasting 24-hour water demand histograms for specific user groups are discussed, using two different water supply subsystems as examples (in Wroclaw and Klodzko). The applicability of artificial neural networks to the calibration and verification of hydraulic models, as well as to the modeling of flow in water supply systems, has been confirmed. Analysis of the efficiency of artificial neural networks in forecasting 24-hour profiles of hourly water demand in housing estates has revealed a relatively high quality of prediction, which is comparable to, or higher than, the quality of the predictions obtained with models of ARIMA class or with exponential smoothing of the time series. It has been demonstrated that the optimal structures of perceptron networks are not of a complex nature, so the process of their education or re-education does not require long-lasting computations. In the procedures of choosing those structures the delay can be reduced to 5 days of the same category (working days, weekends, national holidays, bank holidays), the number of hidden layers to 1, and the number of neurons in the hidden layer to 15. Neural networks can also be used for calibrating the models of water flow in water supply systems, as well as for computer simulations showing how these systems function. The optimal structures of the networks can be chosen using the packets 'Neural networks' of the software STATISTICA (v. 6 to 8). - Źródło:
-
Ochrona Środowiska; 2008, 30, 2; 23-28
1230-6169 - Pojawia się w:
- Ochrona Środowiska
- Dostawca treści:
- Biblioteka Nauki