Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "artificial gas" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Correction of gas sensor dynamic errors by means of neural networks
Autorzy:
Roj, J.
Urzędniczok, H.
Powiązania:
https://bibliotekanauki.pl/articles/114150.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
gas sensors
artificial neural networks
dynamic correction
Opis:
The paper presents a method based on artificial neural network (ANN) technique applied for correction of dynamic error of gas concentration measuring transducer. Its response time is about 8 minutes. The results obtained in the research of this transducer were used for learning and testing ANN, which were implemented in the dynamic correction task. The described method allowed for significant reduction of the transducer’s response time – the output signal was practically fixed after a time equal to one sampling period of output signal provided that the stimulus is a step function. In addition, the use of ANN allows reducing the impact of the transducer dynamic non-linearity on the correction effectiveness.
Źródło:
Measurement Automation Monitoring; 2015, 61, 12; 538-541
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Technical state assessment of charge exchange system of self-ignition engine, based on the exhaust gas composition testing
Autorzy:
Rudnicki, J.
Zadrąg, R.
Powiązania:
https://bibliotekanauki.pl/articles/258598.pdf
Data publikacji:
2017
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
diagnostic model
self-ignition engine
exhaust gas components
artificial neural networks
Opis:
This paper presents possible use of results of exhaust gas composition testing of self - ignition engine for technical state assessment of its charge exchange system under assumption that there is strong correlation between considered structure parameters and output signals in the form of concentration of toxic compounds (ZT) as well as unambiguous character of their changes. Concentration of the analyzed ZT may be hence considered to be symptoms of engine technical state. At given values of the signals and their estimates it is also possible to determine values of residues which may indicate a type of failure. Available tool programs aimed at analysis of experimental data commonly make use of multiple regression model which allows to investigate effects and interaction between model input quantities and one output variable. Application of multi-equation models provides great freedom during analysis of measurement data as it makes it possible to simultaneously analyze effects and interaction of many output variables. It may be also implemented as a tool for preparation of experimental material for other advanced diagnostic tools such as neural networks which , in contrast to multi-equation models, make it possible to recognize a state at multistate classification and - in consequence – to do diagnostic inference. Here , these authors present merits of application of the above mentioned analytical tools on the example of tests conducted on an experimental engine test stand.
Źródło:
Polish Maritime Research; 2017, S 1; 203-212
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting of the daily demand for natural gas in rural households using the methods of artificial intelligence. Part I. Forecasting using artificial neural networks
Prognozowanie dobowego zapotrzebowania na gaz ziemny wiejskich gospodarstw domowych przy wykorzystaniu metod sztucznej inteligencji. Cz. 1. Prognozowanie przy wykorzystaniu sztucznych sieci neuronowych
Autorzy:
Nęcka, K.
Trojanowska, M.
Małopolski, J.
Powiązania:
https://bibliotekanauki.pl/articles/334058.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
natural gas
short-term forecasts
artificial neural networks
gaz ziemny
prognoza krótkookresowa
sztuczna sieć neuronowa
Opis:
The paper determines daily forecast demands for natural gas using artificial neural networks (MLPs). The influence of net-work structure, the type of activation function and the training process used on the quality of prediction were studied. It was found that the quality of forecasts was highly influenced by the network training algorithm. The smallest errors of the ex-pired forecasts (MAPE 5-6%) were obtained using the BFGS algorithm.
W trakcie badań wyznaczano dobowe prognozy zapotrzebowania na gaz ziemny z wykorzystaniem sztucznych sieci neuronowych MLP. Przebadano wpływ struktury sieci, rodzaju funkcji aktywacji oraz zastosowanego procesu uczenia sieci na jakość predykcji. Stwierdzono, że na jakość prognoz duży wpływ ma algorytm uczenia sieci. Najmniejsze błędy prognoz wygasłych (MAPE rzędu 5-6%) uzyskano stosując algorytm BFGS.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2015, 60, 2; 62-64
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monitoring of high-speed shaft of gas turbine using artificial neural networks: predictive model application
Autorzy:
Rahmoune, M. B.
Hafaifa, A.
Abdellah, K.
Chen, X. Q.
Powiązania:
https://bibliotekanauki.pl/articles/328726.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
monitoring
gas turbine
vibrations
artificial neural networks
predictive model
turbina gazowa
drgania
sztuczna sieć neuronowa
model predykcyjny
Opis:
The automatic engineering known a very rapid progress with the consequent development of numerical methods and computer systems, by the growth of computational capacity. In this context, this work proposes a strategy of predictive control of the high-pressure shaft speed of a gas turbine using artificial neural networks in order to monitor the vibratory behavior of this rotating machine. This approach makes it possible to ensure the stability of this turbine under real conditions and to detect any deviation of their dynamic behavior from the margin of safety. This approach makes it possible to include the control limitations on the turbine variables in the modeling step of the high-speed shaft speed controller.
Źródło:
Diagnostyka; 2017, 18, 4; 3-10
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Advanced gas turbines health monitoring systems
Zaawansowany system monitorowania stanu technicznego w turbinach gazowych
Autorzy:
Adamowicz, M.
Żywica, G.
Powiązania:
https://bibliotekanauki.pl/articles/327586.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
monitoring
gas turbine
vibrations
artificial neural networks
predictive model
monitorowanie
turbina gazowa
wibroakustyka
sieci neuronowe
model predykcyjny
Opis:
An overview of science papers in the field of machine diagnosis has exposed increasing efforts in developing accurate and reliable engine health monitoring systems. Attempts have been made in both diagnostics and prediction of system faults. Essential limitations of the standard monitoring system are discussed in this paper as well as arguments for implementation of the Advanced Gas Turbine Health Monitoring Systems. Examples of implementation are discussed and a comparison between “Enhanced Arrangement” and “Standard Arrangements” is carried out. The individual system components are implemented today using very different methods. Performance degradation of gas turbines is described here with an approach of Condition Based Maintenance and it was shown how the classification method can help to improve equipment operation. The review of signal processing methods was carried out to present strengths and shortcomings of individual methods.
Przegląd literatury w dziedzinie diagnostyki maszyn wykazuje duże zainteresowanie środowiska naukowego opracowaniem niezawodnych i precyzyjnych metod oceny stanu technicznego napędów turbinowych. Prace te mają najczęściej na celu opracowanie systemów służących do bieżącej diagnostyki uszkodzeń pojawiających się podczas pracy jak i prognozowania przyszłych defektów. W artykule przeprowadzono ocenę najczęściej stosowanych metod diagnostycznych jak również omówiono zastosowanie „Zaawansowanego systemu monitorowania stanu technicznego turbin gazowych”. Przedstawione zostało porównanie standardowego i zaawansowanego układu diagnostyczno-sterującego. Indywidualne metody diagnostyczne zostały opisane wraz z przykładami zastosowania. Wykazano, że spadek sprawności turbiny gazowej jest ściśle związany z jej stanem technicznym, który może być stale monitorowany. Oceniono również wpływ metod klasyfikacji uszkodzeń na wykrywalność stopnia degradacji.
Źródło:
Diagnostyka; 2018, 19, 2; 77-87
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda wspomagania komputerowego w badaniach diagnostycznych łopatek turbin gazowych
Computer-aided method of diagnostics of gas turbine blades
Autorzy:
Bogdan, M.
Błachnio, J.
Powiązania:
https://bibliotekanauki.pl/articles/208601.pdf
Data publikacji:
2011
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
łopatki eksploatowane turbiny gazowej
ocena stanu
sztuczne sieci neuronowe
operating gas turbine blades
state condition
artificial neural networks
Opis:
W artykule przedstawiono metodę wspomagania komputerowego do diagnozowania łopatek turbiny gazowej z wykorzystaniem sztucznych sieci neuronowych. Głównym celem prezentacji jest opracowana sieć neuronowa, za pomocą której na podstawie cech obrazów powierzchni łopatek dokonuje się orzekania o ich stanie (element zdatny, element częściowo zdatny, element niezdatny). Opierając się na wnioskach sformułowanych na podstawie badań mikrostruktury, dotyczących oceny stopnia przegrzania (łopatki zdatne i niezdatne do dalszej eksploatacji), przyjęto jako wzorce obrazy powierzchni reprezentujące łopatki w różnych stanach (neuronowa klasyfikacja wzorcowa). Dodatkowo, wiążąc oraz segregując (wg ich przydatności w procesie uczenia sieci) parametry obrazów, uzyskane zarówno z histogramów jak i macierzy zdarzeń, zautomatyzowano i zwiększono wiarygodność (wspomaganie komputerowe) procesu decyzyjnego. Zastosowanie sztucznej sieci neuronowej umożliwia w większym stopniu odwzorowanie złożonych zależności pomiędzy obrazem łopatki a jej stanem, niż to realizuje diagnosta dotychczasową metodą subiektywną.
The article presents a computer - aided method of diagnostics of gas turbine blades with the use of artificial neural networks. The subject of presentation is the developed neural network, with the help of which - on the basis of features of blade surface images-their condition is determined (operable element, partly operable element, inoperable element). Basing on conclusions formulated on the basis of microstructure examinations and concerning evaluation of state of overheating (blades suitable and not suitable for further operation), as patterns assumed were surface images representing blades in various states (neural pattern classification). Additionally, combining and segregating (according to their applicability for the network teaching process) image parameters, acquired from histograms as well as from matrix of events, automated and increased was the credibility (computer aiding) of a decision process. The application of artificial neural network enables better representation of complex relations between blade image and its condition than in the case of subjective methods used currently by diagnosticians.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2011, 60, 1; 71-81
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Skuteczność prognozowania zużycia gazu z wykorzystaniem metod regresji i sztucznych sieci neuronowych
Prediction of gas consumption efficiency using regression and artificial neural networks
Autorzy:
Cieślik, T.
Metelska, K.
Powiązania:
https://bibliotekanauki.pl/articles/104941.pdf
Data publikacji:
2017
Wydawca:
Politechnika Rzeszowska im. Ignacego Łukasiewicza. Oficyna Wydawnicza
Tematy:
regresja liniowa
regresja potęgowa
parametry sztuczne
sztuczne sieci neuronowe
konsumpcja gazu
linear regression
exponential regression
parameters
artificial neural networks
gas consumption
Opis:
Na podstawie zgromadzonych danych takich jak: temperatura, siła wiatru oraz zużycie gazu w ciągu dnia na przestrzeni dwóch lat określono wpływ czynników atmosferycznych na konsumpcje gazu za pomocą regresji wielorakiej, funkcji potęgowych oraz funkcji użytkownika. Wyznaczono wpływ miesiąca oraz dnia (parametr sztuczny) na konsumpcje gazu. Zbudowano modele regresji liniowe, potęgowej oraz sztuczne sieci neuronowe służące do określania zużycia gazu. Starano się wyznaczyć jak najlepszy model regresji i porównywano go do modeli sieci neuronowych za pomocą MAPE (średni absolutny błąd procentowy).
Based on the collected data, such as temperature, wind power and gas consumption during the day for over two years determine the effects of weathering on gas consumption by using multiple regression, power functions and user functions. We determine the impact of the month and day (artificial parameter) to consume gas. We build models of linear regression-in, power series and artificial neural networks for determining gas consumption. We are trying to determine how best regression model and compare it to the neural network models using MAPE (mean absolute percentage error).
Źródło:
Czasopismo Inżynierii Lądowej, Środowiska i Architektury; 2017, 64, 1; 133-141
2300-5130
2300-8903
Pojawia się w:
Czasopismo Inżynierii Lądowej, Środowiska i Architektury
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies