Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Lee, C." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Enhancement of Drilling Safety and Quality Using Online Sensors and Artificial Neural Networks
Autorzy:
Liu, T.- I.
Kumagai, A.
Lee, C.
Powiązania:
https://bibliotekanauki.pl/articles/90529.pdf
Data publikacji:
2003
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
drilling safety
online sensors
artificial neural networks
bezpieczeństwo pracy
ocena ryzyka zawodowego
wiertnictwo
sieci neuronowe
Opis:
Cutting force sensors and neural networks have been used for the occupational safety of the drilling process. The drill conditions have been online classified into 3 categories: safe, caution, and danger. This approach can change the drill just before its failure. The inputs to neural networks include drill size, feed rate, spindle speed, and features that were extracted from drilling force measure-ments. The outputs indicate the safety states. This detection system can reach a success rate of over 95%. Furthermore, the one misclassification during online tests was a one-step ahead pre-alarm that is acceptable from the safety and quality viewpoint. The developed online detection system is very robust and can be used in very complex manufacturing environments.
Źródło:
International Journal of Occupational Safety and Ergonomics; 2003, 9, 1; 37-56
1080-3548
Pojawia się w:
International Journal of Occupational Safety and Ergonomics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Non-parametric machine learning methods for evaluating the effects of traffic accident duration on freeways
Autorzy:
Lee, Y.
Wei, C.-H.
Chao, K.-C.
Powiązania:
https://bibliotekanauki.pl/articles/223569.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
accident on freeway
accident duration
effect evaluating
correlation
artificial neural networks
k-nearest neighbour method
wypadek na autostradzie
czas trwania wypadku
ocena skutków
korelacja
sztuczne sieci neuronowe
metoda najbliższego sąsiada
Opis:
Traffic accidents usually cause congestion and increase travel-times. The cost of extra travel time and fuel consumption due to congestion is huge. Traffic operators and drivers expect an accurately forecasted accident duration to reduce uncertainty and to enable the implementation of appropriate strategies. This study demonstrates two non-parametric machine learning methods, namely the k-nearest neighbour method and artificial neural network method, to construct accident duration prediction models. The factors influencing the occurrence of accidents are numerous and complex. To capture this phenomenon and improve the performance of accident duration prediction, the models incorporated various data including accident characteristics, traffic data, illumination, weather conditions, and road geometry characteristics. All raw data are collected from two public agencies and were integrated and cross-checked. Before model development, a correlation analysis was performed to reduce the scale of interrelated features or variables. Based on the performance comparison results, an artificial neural network model can provide good and reasonable prediction for accident duration with mean absolute percentage error values less than 30%, which are better than the prediction results of a k-nearest neighbour model. Based on comparison results for circumstances, the Model which incorporated significant variables and employed the ANN method can provide a more accurate prediction of accident duration when the circumstances involved the day time or drunk driving than those that involved night time and did not involve drunk driving. Empirical evaluation results reveal that significant variables possess a major influence on accident duration prediction.
Źródło:
Archives of Transport; 2017, 43, 3; 91-104
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies