Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "predykcja" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Analiza założeń dla modelowania plonu buraka cukrowego z wykorzystaniem sztucznych sieci neuronowych
The analysis of assumptions for modeling sugar beet crop with utilization of artificial neural networks
Autorzy:
Niedbała, G.
Przybył, J.
Boniecki, P.
Sęk, T.
Powiązania:
https://bibliotekanauki.pl/articles/287451.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
burak cukrowy
predykcja plonu
sztuczne sieci neuronowe
sugar beet
crop prediction
artificial neural network
Opis:
Do planowania plonu roślin, w tym plonu buraka cukrowego, wykorzystuje się modele prognostyczne. Istniejące modele mają zastosowanie zarówno w skali mikro - dla gospodarstwa, jaki i makro - dla regionu, czy kraju. Te modele, najczęściej zaimplementowane w programach komputerowych, ze względu na dużą liczbę danych wejściowych, są raczej niedostępne dla plantatora buraka cukrowego i rolniczych służb doradczych. Dlatego w pracy podjęto próbę opracowania własnego modelu plonu buraka cukrowego, opartego na metodach sztucznej inteligencji, przy wykorzystaniu możliwie niewielkiej liczby danych wejściowych. Założono, że dane wejściowe do modelu powinny stanowić podstawowe czynniki charakteryzujące siedlisko, użyte środki produkcji i przebieg warunków pogodowych.
In planning crops, including sugar beet crop, prognostic models are used. Existing models are utilized in micro scale - for the farm, as well as in macro scale - for region or country. These models, generally implemented in computer programmes, are rather unavailable for sugar beet planters and agricultural advisory services because of the huge amount of input data. That is why in this paper an attempt was made to create own model of sugar beet crop based on artificial intelligence methodology and the smallest possible amount of input data. It was assumed that input data for models should be the basic factors characterizing habitat, means of production used and weather conditions course.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 2, 2; 123-130
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predykcja plonów buraka cukrowego przy wykorzystaniu technik neuronowych
Prediction of sugar beet yields with the use of neural network techniques
Autorzy:
Niedbała, G.
Przybył, J.
Sęk, T.
Powiązania:
https://bibliotekanauki.pl/articles/288671.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
burak cukrowy
predykcja plonu
sztuczna sieć neuronowa
sugar beet
yield prediction
artificial neural network
Opis:
Uzyskanie plonu korzeni buraka cukrowego o wysokich parametrach jakościowych i ilościowych wymaga starannego zaplanowania całego procesu produkcji. Do uzyskania możliwie najlepszych efektów produkcyjnych stosuje się modele plonu. Stosowane dotychczas modele charakteryzują się niewystarczającą dokładnością prognozy, są skomplikowane i uciążliwe w praktycznym zastosowaniu. Dlatego postanowiono utworzyć model plonu buraka cukrowego z wykorzystaniem Sztucznych Sieci Neuronowych (SSN). Symulatory tych sieci pozwalają na wytworzenie modelu prognostycznego i jego weryfikację bez dużych nakładów finansowych. Niezbędne są tu jednak badania polowe, dzięki którym zostanie utworzona baza danych empirycznych.
To obtain the sugar beet roots yield of both, high qualitative and quantitative parameters, the correct planning of complete production is required. During planning of this process, the models for obtaining best production effects are being used. However, the models already used are characterized by insufficient exactitude of prognosis, are complicated and inconvenient in practical implementation. This inconvenience was the reason for creation of a new sugar beet yielding model with the use of Artificial Neural Networks (ANN). Simulators of these networks enabled the prognostic model creation and its verification without large financial inputs. However, the field experiments are indispensable for creation on their ground the empirical data base.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 8, 8; 285-291
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuralna predykcja parametrów procesu biotechnologicznego
Using the neural networks for prediction of biotechnological process parameters
Autorzy:
Pielecki, J.
Skwarcz, J.
Powiązania:
https://bibliotekanauki.pl/articles/290738.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczna sieć neuronowa
predykcja
inulinaza
inwertaza
Aspergillus niger
Kluyveromyces marxianus
artificial neural network
prediction
inulinase
invertase
Opis:
Celem pracy była próba zastosowanie sieci neuronowych o konstrukcji wielowarstwowej do predykcji optymalnych warunków jednoczesnego wytwarzania inulinazy i inwertazy przez grzyb nitkowaty Aspergillus niger i drożdże Kluyveromyces marxianus w warunkach wgłębnych hodowli wstrząsanych. Wejścia sieci reprezentowała ilość poszczególnych składników podłoża hodowlanego (NH4NO3; (NH4)2HPO4; KH4PO4; MgSO4 7H2O, FeSO2 2H2O, ekstrakt drożdżowy, inulina), temperatura procesu biosyntezy enzymów, rodzaj mikroorganizmu i czasu trwania hodowli, a wyjścia - aktywność inulinazy i inwertazy w płynach pohodowlanych. Do oceny osiągalności zadawanych wartości wyjściowych zastosowano sieć odwróconą. W doświadczeniach z użyciem szczepu Aspergillus niger i Kluyveromyces marxianus największy wpływ na końcowy efekt wytwarzania obydwu enzymów wywierała zawartość siarczanu magnezu obok źródła węgla. Kolejnym ważnym składnikiem podłoża był azotan amonu i fosforan dwuamonowy. Najmniej istotny wpływ na wytwarzanie obydwu enzymów wywierała zawartość siarczanu żelaza i jednozasadowego fosforanu potasu.
An attempt was made to apply the neural networks of multilayer construction to predicting the optimum conditions for simultaneous inulinase and invertase produc-tion by Aspergillus niger fungi and Kluyveromyces marxianus yeasts in deep shaken cultures. The network inputs represented the numbers of particular com-pounds of agriculture medium (NH4NO3; (NH4)2HPO4; KH4PO4; MgSO4 7H2O, FeSO2 2H2O; yeast extract, inuline), the temperature of enzyme biosynthesis process, kind of microorganisms and culture duration, whereas the outputs-inulinase and invertase activities in post-culture liquids. The reversed networks was applied to evaluating the attainability of assigned output values. In experiments with Aspergillus niger and Kluyveromyces marxianus strains final results concerning production of both enzymes were strongest affected by magnesium sulphate content next to the source of carbon. Following important components of medium were ammonium nitrate and bi-ammonium phosphate. The least effect on production of both enzymes showed the contents of iron sulphate and monobasic potassium phosphate.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 8, 8; 305-314
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sztucznych sieci neuronowych typu RBF do predykcji plonu wybranych roślin zbożowych
The use of artificial neuronal networks of the RBF type for prediction of yield of chosen cereal plants
Autorzy:
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/335789.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sztuczna sieć neuronowa
RBF
predykcja
plon
zboże
symulacja komputerowa
artificial neural network
prediction
yield
cereal plant
computer simulation
Opis:
Pojawiające się ostatnio metody, mające cechy sztucznej inteligencji, pozwalają na budowę modeli symulacyjnych, które realizują postawione zadania w oparciu o wzorce zaczerpnięte bezpośrednio z obserwacji przyrody [1]. Szczególną grupę stanowią techniki przetwarzania oparte na sztucznych sieciach neuronowych, będące w istocie komputerowymi symulatorami pracy mózgu [3]. Za pomocą modeli neuronowych można m.in. dokonać predykcji wielkości plonów płodów rolnych w oparciu o posiadane empiryczne dane, dotyczące zbiorów w latach ubiegłych. W pracy proponuje się wykorzystanie technik predykcyjnych, jakie m.in. reprezentują wybrane topologie sieci neuronowych, w szczególności sieci neuronowe typu RBF (Radial Basis Functions).
Appearing recently methods, having guilds of artificial intelligence, permit on building of simulating models which realize assigned tasks on the basis of patterns taken directly with nature observation [1]. The processing techniques based on artificial neural networks create a special group, being in fact a computer simulators of brain work [3]. With the help of neuronal models it is possible to predict the expected crops yield on the basis of empirical data regarding crop yields in last summers. This work proposes utilization of prediction methods, which represent chosen topologies of neuronal nets among others, the RBF (Radial Basis Functions) neural network peculiarly.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 2; 15-19
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of artificial neural networks to predict the spatial variability of grain quality during combine harvest of wheat
Wykorzystanie sztucznych sieci neuronowych do prognozowania zmienności przestrzennej jakości ziarna podczas zbioru kombajnowego pszenicy
Autorzy:
Niedbała, G.
Czechlowski, M.
Wojciechowski, T.
Powiązania:
https://bibliotekanauki.pl/articles/335514.pdf
Data publikacji:
2013
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
sztuczne sieci neuronowe
MLP
predykcja neuronowa
selektywny zbiór zbóż
spektroskopia VIS-NIR
artificial neural network
neural prediction
selective grain harvest
VIS-NIR spectroscopy
Opis:
The aim of the study was to attempt to build and validate the neural model controlling the qualitative selection of the stream of grain mass as early as the stage of combine harvesting of winter wheat. The model uses the highest possible number of data describing locally changeable environmental conditions such as: protein content, moisture and yield of wheat grain, soil abundance in basic nutrients (total Kjeldahl nitrogen, exchangeable phosphorus and potassium, magnesium) and additionally - the pH coefficient, content of organic matter in soil and the relative altitude. The construction of the neural model was preceded with a multiple regression analysis. The results of the analysis (α = 0.05) indicated statistical significance of all of the traits under analysis, which influence grain quality and are defined as the content of protein. The MLP neural network (9-30-1) consisted of one hidden layer containing 30 neurons, one output and nine inputs. The network learning was done with the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm in a single phase during 827 epochs with the SOS error function. The study was a part of the development project No. R12 0073 06 entitled “Development and validation of the technology for separation grain stream during cereals selective harvesting”, financed by the Polish National Centre for Research and Development.
Celem pracy było podjęcie próby budowy i walidacji modelu neuronowego sterującego selekcją jakościową strumienia masy ziarna już na etapie kombajnowego zbioru pszenicy ozimej. Model wykorzystuje jak najwięcej danych opisujących lokalnie zmienne warunki środowiskowe takie jak: zawartości białka, wilgotność i wielkość plonu ziarna pszenicy, zasobność gleby w podstawowe składniki pokarmowe (azot ogólny, fosfor i potas wymienny, magnez) oraz dodatkowo współczynnik pH, zawartość materii organicznej w glebie oraz wysokość względną NPM. Budowę modelu neuronowego poprzedzono analizą regresji wielorakiej. Wyniki tej analizy na poziomie α = 0,05 wskazały istotność statystyczną wszystkich badanych cech wpływających na jakość ziarna zdefiniowaną jako zawartość białka. Zbudowana sieć neuronowa typu MLP (9-30-1) składała się jednej warstwy ukrytej zawierającej 30 neuronów, jednego wyjścia i dziewięciu wejść. Uczenie sieci z wykorzystaniem algorytmu BFGS wykonano jednofazowo w trakcie 827 epok z funkcją błędu SOS. Pracę zrealizowano w ramach projektu rozwojowego nr R12 0073 06 pt: „Opracowanie i walidacja technologii rozdziału strumienia ziarna podczas selektywnego zbioru zbóż” finansowanego przez NCBIR.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2013, 58, 1; 126-129
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie technik sztucznych sieci neuronowych do predykcji wybranych parametrów jako uzupełnienia zbioru danych wejściowych w konstrukcji modeli parametrycznych 3D
The use of artificial neural network techniques to predict selected parameters as a supplement to the input data set in the construction of 3D parametric models
Autorzy:
Kaczmarczyk, Weronika
Brodzicki, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/2143629.pdf
Data publikacji:
2021
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
predykcja 1D
sieci neuronowe
estymacja parametryczna
modelowanie 3D
charakterystyka złoża węglowodorów
1D prediction
artificial neural network
parametrical estimation
3D modeling
hydrocarbon reservoir characterization
Opis:
W artykule przedstawiono możliwości wykorzystania sztucznych sieci neuronowych (SSN) do predykcji parametrycznej w profilach otworów wiertniczych, której zastosowanie uzupełniło zestaw informacji we wszystkich otworach wiertniczych zlokalizowanych w obrębie analizowanego obszaru. Zaprezentowana w artykule metodologia może być użyta w przypadku braku możliwości specjalistycznej interpretacji krzywych geofizyki wiertniczej, uzupełniającej brakujące dane. Zestaw wykorzystanych w pracy danych obejmował rozwiązania w profilach 10 otworów wiertniczych, z których cztery otwory charakteryzowały się pełnym zestawem danych analizowanych w ramach niniejszego artykułu, obejmujących prędkość fali podłużnej, porowatość efektywną, nasycenie węglowodorami, moduł Younga i współczynnik Poissona. Wykorzystując technikę działania sztucznych sieci neuronowych, przeprowadzono predykcję brakujących informacji, bazując na relacjach pomiędzy analizowanymi parametrami w otworach, gdzie estymowane dane były dostępne. W ostatnich latach obserwuje się dynamiczny rozwój technologii szeroko pojętego uczenia maszynowego (ang. machine learning) i tak zwanej sztucznej inteligencji. Niewiele pozostaje dziedzin nauki, w których nie miałyby one zastosowania. Tak jest również w branży naftowo-gazowniczej. Parametr nasycenia węglowodorami, pomimo wyzwań, jakie niesie za sobą interpretacja tego parametru, również został poddany próbie estymacji, potwierdzając niskimi wartościami korelacji pomiędzy analizowanymi parametrami, że wymaga zdecydowanie bardziej zaawansowanych prac o indywidualnym charakterze. Wyniki predykcji parametrycznej, poddane wcześniej walidacji poprzez charakterystykę parametrów R (różnica pomiędzy wartością rzeczywistą a estymowaną) i RMSE (pierwiastek błędu średniokwadratowego), zostały w kolejnym kroku zaaplikowane w procesie modelowania przestrzennego wszystkich analizowanych parametrów. Finalnie, w celu wizualizacji różnic pomiędzy wykorzystaniem niepełnego i po części estymowanego zestawu danych w analizie przestrzennej, zaprezentowano mapę średnich wartości wybranego parametru w obrębie analizowanego interwału stratygraficznego. Tak przygotowany zestaw danych pozwolił na bardziej wiarygodne odtworzenie przestrzenne rozkładu parametrów istotnych w kontekście charakterystyki złoża węglowodorów, na podstawie którego w kolejnych etapach możliwa jest wiarygodniejsza ocena potencjału złożowego analizowanego obiektu. Zaprezentowana w artykule metodyka, oparta na rozwiązaniu rzeczywistego problemu badawczego, stanowi alternatywę, dla koszto- i czasochłonnych interpretacji geofizycznych, niekiedy znacznych liczb otworów wiertniczych, szczególnie dla obszarów charakteryzujących się relatywnie niewielką przestrzenną zmiennością i złożonością tektoniczną. Warunkiem jest dostępność interpretacji danych geofizyki wiertniczej w co najmniej kilku otworach stanowiącej wzorzec dla odtworzenia zmienności badanego parametru/parametrów w pozostałych profilach otworów wiertniczych.
The article presents the possibilities of using artificial neural networks for parametric prediction in borehole profiles, the application of which supplemented the set of information in all boreholes located within the analyzed area. The approach presented in the article will be used when there is no possibility of specialized interpretation of the drilling geophysics curves, supplementing the missing data. The set of data used in the study included solutions in the profiles of 10 boreholes, four of which were characterized by the availability of the full data set analyzed in this article, including compressional wave velocity, effective porosity, hydrocarbon saturation, Young’s modulus and Poisson’s ratio. Using the technique of the operation of artificial neural networks, a prediction of missing information was carried out based on the relationships between the analyzed parameters in the wells, where the estimated data was available. In recent years, there has been a dynamic development of machine learning technology and the so-called artificial intelligence. There are very few fields of science in which they find no application. The hydrocarbon saturation parameter, despite the challenges posed by the interpretation of this parameter, was also subjected to an estimation attempt, confirming the low correlation values between the analyzed parameters and requiring much more advanced work of an individual nature. The results of parametric prediction, previously validated by characterizing the R and RMSE parameters, were applied in the next step in the spatial modeling process of all analyzed parameters. Finally, as part of the visualization of the differences between the use of an incomplete and partially estimated data set in spatial analysis, a map of mean values of the selected parameter within the analyzed interval was presented. The set of data prepared in this way allowed for a more reliable spatial reconstruction of the distribution of parameters important in the context of the characteristics of the hydrocarbon reservoir, on the basis of which, in the subsequent stages, it is possible to more fully assess the deposit potential of the analyzed object. The methodology presented in the article, supported by a real case study, is an alternative to geophysical interpretations that require financial and time resources, sometimes large numbers of boreholes, especially for areas characterized by relatively low spatial variability and tectonic complexity. The condition is the availability of the interpretation in at least several boreholes, constituting a pattern for recreating the variability of the tested parameter / parameters in the remaining profiles of the boreholes.
Źródło:
Nafta-Gaz; 2021, 77, 7; 429-445
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies