Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "analiza neuronowa obrazu" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Use of information technology in the evaluation of contamination in flour
Zastosowanie technik informatycznych w ocenie zanieczyszczeń w mące
Autorzy:
Szwedziak, K,
Krótkiewicz, M.
Królczyk, J.
Powiązania:
https://bibliotekanauki.pl/articles/337477.pdf
Data publikacji:
2014
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
image analysis
artificial neural network
quality assessment
pollution
grain mill product
image recognition
analiza obrazu
sztuczna sieć neuronowa
ocena
jakość
zanieczyszczenie
produkt
przemiał zbóż
rozpoznawanie obrazu
Opis:
During the flour manufacturing process flour may be contaminated resulting in lower quality. Before placing a product in the commercial circulation flours are subjected to laboratory analysis, including in terms of product purity. This analysis is based on organoleptic determination (through visual inspection) of the amount of impurities in the flour and in the cereal products. This paper presents innovative techniques to assess quality in terms of pollution of flour using image analysis and artificial neural networks (ANN).
W czasie procesu technologicznego produkcji mąki, może ona ulec zanieczyszczeniu, co powoduje obniżenie jej jakości. Przed wprowadzeniem produktu do obiegu konsumpcyjnego, mąki poddawane są analizie laboratoryjnej, między innymi pod względem czystości produktu. Analiza ta polega na organoleptycznym określeniu za pomocą zmysłu wzroku ilości zanieczyszczeń w mące i przetworach zbożowych. W artykule przedstawiono innowacyjne techniki oceny jakości pod względem zanieczyszczeń mąki wykorzystujące analizę obrazu oraz sztuczne sieci neuronowe (SSN).
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2014, 59, 1; 121-125
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Innowacyjna metoda rozpoznawania wybranych cech jakościowych nasion z wykorzystaniem analizy obrazu i sztucznych sieci neuronowych (SSN)
Innovative method for identifying selected qualitative characteristics of seeds using image analysis and artificial neural networks (ANN)
Autorzy:
Szwedziak, K.
Powiązania:
https://bibliotekanauki.pl/articles/288227.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
analiza obrazu
RGB
Leaf
sztuczna sieć neuronowa
SSN
cechy jakościowe
nasiona
ocena sensoryczna
magazynowanie
image analysis
artificial neural network
qualitative characteristics
seeds
sensory assessment
storage
Opis:
Badanie cech jakościowych ma coraz większe znaczenie ze względu na ustalenie ceny skupu oraz ze względu na dalsze przeznaczenie nasion. Po wejściu Polski do Unii Europejskiej surowce i produkty końcowe muszą sprostać wymogom stawianym przez pozostałe kraje członkowskie. Ważnym problemem współczesnego rolnictwa zrównoważonego jest produkcja nasion oraz produktów o odpowiednich parametrach jakościowych. Dotychczasowe badania dowodzą, że zarówno technologia zbioru, warunki transportu i suszenia a także przechowywanie wywierają wpływ na jakość nasion, warunkując ich przydatność dla przemysłu. Zadaniem przemysłu zbożowego jest, oprócz przetwórstwa, także odpowiednie zabezpieczenie w czasie magazynowania, aby zachować odpowiednie właściwości i walory smakowe nasion. W związku z tym istnieje konieczność ciągłej kontroli produktów jak również surowców magazynowanych. Przemysł rolno - spożywczy dysponuje jedynie metodami opartymi na ocenie sensorycznej, wykorzystującej narządy zmysłu. Metoda ta jest bardzo czasochłonna i pracochłonna. Poszukiwanie innowacyjnych metod pozwala na wdrożenie do przemysłu rolno - spożywczego technik opartych na komputerowej analizie obrazu i sztucznych sieci neuronowych. Założono zatem, że korzystając z komputerowej analizy obrazu oraz przygotowanej w tym celu aplikacji do przetwarzania i analizowania pozyskanych obrazów cyfrowych, wykorzystując model rozpoznawania barw RGB, pozwoli na szybkie uzyskiwanie wyników. Ma to znaczenie w czasie skupu zbóż do magazynów, w celu określenia wstępnej jakości przyjmowanych nasion pod względem zanieczyszczeń, co w konsekwencji prowadzi do ustalenia ceny skupowanego materiału. Drugim aspektem wykorzystania tej metody jest kontrola jakości przechowywanego ziarna w magazynach. Opracowanie takiej metody pozwoli na szybkie uzyskanie wyników z pominięciem czasochłonnych prac laboratoryjnych. Dodatkowym elementem pracy jest porównanie metody tradycyjnej z metodą komputerowej analizy obrazu. Do porównania wykorzystano sztuczne sieci neuronowe.
Examination of qualitative characteristics becomes more and more important for fixing purchase price and due to further use of seeds. Following Poland accession to the European Union, raw materials and final products must meet requirements set by other member states. An important issue in modern sustainable agriculture is the production of seeds and products possessing suitable qualitative parameters. Studies completed to date prove that harvesting technology, transport and drying conditions, and storage affect seeds quality, thus conditioning their usability for industry. Besides processing, grain industry is expected to provide adequate protection during storage so as to ensure suitable properties and taste quality of seeds. As a result of this, it is necessary to provide continuous control of products and stored materials. Agricultural and food industry has at its disposal methods based on sensory assessment only, using sense organs. This method is highly timeconsuming and labour absorbing. Search for innovative methods allows to introduce techniques based on computerised image analysis and artificial neural networks in agricultural and food industry. It has been assumed then that using computerised image analysis and specially prepared for this purpose application for processing and analysis of obtained digital images with help of the RGB colour identification model will allow to obtain results quickly. This is important when purchasing grain for stores in order to determine initial quality of accepted seeds as regards impurities, which consequently leads to determining purchased material price. Another aspect of using this method is quality control for grain kept in stores. Development of such method will allow to obtain results quickly, omitting time-consuming laboratory works. An additional element in this paper is comparing conventional method to computerised image analysis method. Artificial neural networks have been used for comparison.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 4, 4; 7-52
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies