Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Multiple Regression" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Machine learning methods applied to sea level predictions in the upper part of a tidal estuary
Autorzy:
Guillou, N.
Chapalain, G.
Powiązania:
https://bibliotekanauki.pl/articles/2078822.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
multiple regression model
artificial neural network
multilayer perceptron
regression function
machine learning algorithm
sea level
Opis:
Sea levels variations in the upper part of estuary are traditionally approached by relying on refined numerical simulations with high computational cost. As an alternative efficient and rapid solution, we assessed here the performances of two types of machine learning algorithms: (i) multiple regression methods based on linear and polynomial regression functions, and (ii) an artificial neural network, the multilayer perceptron. These algorithms were applied to three-year observations of sea levels maxima during high tides in the city of Landerneau, in the upper part of the Elorn estuary (western Brittany, France). Four input variables were considered in relation to tidal and coastal surge effects on sea level: the French tidal coefficient, the atmospheric pressure, the wind velocity and the river discharge. Whereas a part of these input variables derived from large-scale models with coarse spatial resolutions, the different algorithms showed good performances in this local environment, thus being able to capture sea level temporal variations at semi-diurnal and spring-neap time scales. Predictions improved furthermore the assessment of inundation events based so far on the exploitation of observations or numerical simulations in the downstream part of the estuary. Results obtained exhibited finally the weak influences of wind and river discharges on inundation events.
Źródło:
Oceanologia; 2021, 63, 4; 531-544
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Life Factor Approach to the Yield Prediction: a Comparison with a Technological Approach in Reliability and Accuracy
Autorzy:
Lykhovyd, Pavlo
Powiązania:
https://bibliotekanauki.pl/articles/124852.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
artificial neural network
life factor
multiple linear regression
technological factor
yield modelling
Opis:
There are a number of various approaches to the development of yield predictive models in agriculture. One of the most popular ones is based on the yield modeling from the parameters of crop cultivation technology. However, there is another view on the yield prediction models, which is based on the use of life factors as yielding parameters. Our study is devoted to the comparison of a conventional technological approach to the yield prediction with a less prevalent approach of life factor based yield modeling. The testing of two approaches was performed by using the yielding data of sweet corn cultivated in the field trials under the drip-irrigated conditions of the Southern Ukraine, under the different technological treatments, viz. plowing depth, nutrition, and crop density. We developed two multiple linear regression models to compare their efficiency in the yielding predictions. One of the models used cultivation technology parameters as the inputs while the other used life factors as the inputs. Life factors were expressed in numeric values by using the following converter: total water consumption of the crop was used as the factor of water, the total sum of positive temperatures was used as the factor of heat, and the total sum of the main nutrients (NPK) available in the soil was used as the factor of nutrition. The results of the study proved an equal accuracy and reliability of the studied models of sweet corn yields, which is obvious from the values of RSQ. RSQ of the both studied regression models was 0.897. However, additional check of the modeling approaches applied in the feed-forward artificial neural network showed that the life factor based model with the RSQ value of 0.953 provided better yield predictions than the technologically based model with the RSQ value of 0.913. Therefore, we concluded that the life factor approach should be preferred to the technological approach in the development of yield predictive models for agriculture.
Źródło:
Journal of Ecological Engineering; 2019, 20, 6; 177-183
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting the properties of corrugated base papers using multiple linear regression and artificial neural networks
Autorzy:
Adamopoulos, S
Karageorgos, A.
Rapti, E.
Birbilis, D.
Powiązania:
https://bibliotekanauki.pl/articles/52433.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Drewna
Tematy:
prediction
paper property
multiple linear regression
artificial neural network
linerboard
recovered fibre
Źródło:
Drewno. Prace Naukowe. Doniesienia. Komunikaty; 2016, 59, 198
1644-3985
Pojawia się w:
Drewno. Prace Naukowe. Doniesienia. Komunikaty
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting Young’s modulus of Indian coal measure rock using multiple regression and artificial neutral network
Autorzy:
Chakraborty, Sayantan
Bisai, Rohan
Roy, Rohit
Palaniappan, Sathish Kumar
Pal, Samir Kumar
Rao, Karanam Uma Maheshwar
Powiązania:
https://bibliotekanauki.pl/articles/2201429.pdf
Data publikacji:
2023
Wydawca:
Główny Instytut Górnictwa
Tematy:
sandstone
shale
multiple regression
outlier analysis
artificial neural network
piaskowiec
łupek ilasty
regresja wielokrotna
analiza odchyleń
sztuczna sieć neuronowa
Opis:
Accurate information on Young’s modulus (E) is required for simulating rock deformation in mines; on the other hand, it is very cumbersome to obtain in the laboratory and collecting drilled cores in sufficient amounts, especially in the case of soft rocks, is quite impossible. Empirical equations were deducted for - from easily determinable rock properties, and the final model was selected through different statistical strength parameter tests. The generalization of the equation was verified through the normal distribution tests of residues of the equation. R2 came to be 0.609 and was validated using an artificial neural network with an improved value of 0.73.
Źródło:
Journal of Sustainable Mining; 2023, 22, 1; 41--54
2300-1364
2300-3960
Pojawia się w:
Journal of Sustainable Mining
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid wavelet transform – MLR and ANN models for river flow prediction: Case study of Brahmaputra river (Pancharatna station)
Autorzy:
Khandekar, Sachin Dadu
Aswar, Dinesh Shrikrishna
Sabale, Pandurang Digamber
Khandekar, Varsha Sachin
Bajad, Mohankumar Namdeorao
Powiązania:
https://bibliotekanauki.pl/articles/36074310.pdf
Data publikacji:
2024
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
wavelet transform
artificial neural network
multiple linear regression
streamflow
Daubechies wavelet
time series
Opis:
In this research, discrete wavelet transform (DWT) is combined with MLR and ANN to develop WMLR and WANN hybrid models, respectively, for the Brahmaputra river (Pancharatna station) flow forecasting. Daily flow data for the period of 10 year were decomposed (up to fifth level) into detailed and approximation coefficients (using Daubechies wavelets db1, db2, db3, db8 and db10) which were fed as input to MLR and ANN to get the predicted discharge values two days, four days, seven days and 14 days ahead. For all lead times, the WMLR-db10 model was found to be superior as compared to WANN-db1, WANN-db2, WANN-db3, WANN-db8, WMLR-db1, WMLR-db2, WMLR-db3, WMLR-db8 and single MLR and ANN models. During testing period, the values of determination coefficient (R2) and RMSE for WMLR-db10 model for two-, four-, seven- and 14-day lead time were found to be, respectively, 0.996 (751.87 m3·s–1), 0.991 (1,174.80 m3·s–1), 0.984 (1,585.02 m3·s–1), and 0.968 (2,196.46 m3·s–1). Also, it was observed that for lower order wavelets (db1, db2, db3) WANN’s performance was better, and for higher order wavelets (db8, db10) WMLR’s performance was better. Correspondingly, it was observed that all hybrid models’ efficiency increased with increase in the decomposition level.
Źródło:
Scientific Review Engineering and Environmental Sciences; 2024, 33, 1; 69-94
1732-9353
Pojawia się w:
Scientific Review Engineering and Environmental Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling Pollution Index Using Artificial Neural Network and Multiple Linear Regression Coupled with Genetic Algorithm
Autorzy:
Abdulkareem, Iman Ali
Abbas, Abdulhussain A.
Dawood, Ammar Salman
Powiązania:
https://bibliotekanauki.pl/articles/2068477.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
Shatt Al-Arab river
comprehensive pollution index
multiple linear regression
artificial neural network
genetic algorithm
Opis:
Shatt Al-Arab River in Basrah province, Iraq, was assessed by applying comprehensive pollution index (CPI) at fifteen sampling locations from 2011 to 2020, taking into consideration twelve physicochemical parameters which included pH, Tur., TDS, EC, TH, Na+, K+, Ca+2, Mg+2, Alk., SO4-2, and Cl-. The effectiveness of multiple linear regression (MLR) and artificial neural network (ANN) for predicting comprehensive pollution index was examined in this research. In order to determine the ideal values of the predictor parameters that lead to the lowest CPI value, the genetic algorithm coupled with multiple linear regression (GA-MLR) was used. A multi-layer feed-forward neural network with backpropagation algorithm was used in this study. The optimal ANN structure utilized in this research consisted of three layers: the input layer, one hidden layer, and one output layer. The predicted equation of the comprehensive pollution index was created using the regression technique and used as an objective function of the genetic algorithm. The minimum predicted comprehensive pollution index value recommended by the GA-MLR approach was 0.3777.
Źródło:
Journal of Ecological Engineering; 2022, 23, 3; 236--250
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A comparative analysis of artificial neural network predictive and multiple linear regression models for ground settlement during tunnel construction
Autorzy:
Zou, Baoping
Chibawe, Musa
Hu, Bo
Deng, Yansheng
Powiązania:
https://bibliotekanauki.pl/articles/27312113.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
budowa
tunel
osiadanie gruntu
regresja liniowa wielokrotna
sieć neuronowa sztuczna
tunnel
construction
ground settlement
multiple linear regression
artificial neural network
Opis:
Ground settlement during and after tunnelling using TBM results in varying dynamic and static load action on the geo-stratum. It is an undesirable effect of tunnel construction causing damage to the surface and subsurface infrastructure, safety risk, and increased construction cost and quality issues. Ground settlement can be influenced by several factors, like method of tunnelling, tunnel geometry, location of tunnelling machine, machine operational parameters, depth & its changes, and mileage of recording point from starting point. In this study, a description and evaluation of the performance of the artifcial neural network (ANN) was undertaken and a comparison with multiple linear regression (MLR) was carried out on ground settlement prediction. The performance of these models was evaluated using the coefficient of determination R2, root mean square error (RMSE) and mean absolute percentage error (MAPE). For ANN model, the R2, RMSE and MAPE were calculated as 0.9295, 4.2563 and 3.3372, respectively, while for MLR, the R2, RMSE and MAPE, were calculated as 0.5053, 11.2708, 6.3963 respectively. For ground settlement prediction, both ANN and MLR methods were able to predict significantly accurate results. It was further noted that the ANN performance was higher than that of the MLR.
Źródło:
Archives of Civil Engineering; 2023, 69, 2; 503--515
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Models for determining annual average daily traffic on the national roads
Modele do wyznaczania średniego dobowego ruchu w roku na drogach krajowych
Autorzy:
Spławińska, M.
Powiązania:
https://bibliotekanauki.pl/articles/231416.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
droga krajowa
zmienność
natężenie ruchu
dobowy ruch średni w roku
SDR
regresja wieloraka
sieć neuronowa sztuczna
national road
variability
traffic flow
annual average daily traffic
AADT
multiple regression
artificial neural network
Opis:
One of the basic parameters which describes road traffic is Annual Average Daily Traffic (AADT). Its accurate determination is possible only on the basis of data from the continuous measurement of traffic. However, such data for most road sections is unavailable, so AADT must be determined on the basis of short periods of random measurements. This article presents different methods of estimating AADT on the basis of daily traffic (VOL), and includes the traditional Factor Approach, developed Regression Models and Artificial Neural Network models. As explanatory variables, quantitative variables (VOL and the share of heavy vehicles) as well as qualitative variables (day of the week, month, level of AADT, the cross-section, road class, nature of the area, spatial linking, region of Poland and the nature of traffic patterns) were used. Based on comparisons of the presented methods, the Factor Approach was identified as the most useful.
Jednym z podstawowych parametrów opisujących ruch drogowy jest Średni Dobowy Ruch w roku (SDR). Jest on wykorzystywany do różnych celów między innymi do projektowania i planowania rozwiązań drogowych, obliczania hałasu drogowego czy do studiów wypadkowości. Jego nieprawidłowe oszacowanie i prognozowanie może prowadzić do licznych błędów, przykładowo do niewłaściwego doboru typów skrzyżowań i niewłaściwego ich projektowania czy do przeciążenia tras projektowanych na natężenie ruchu mniejsze niż to, które rzeczywiście może się pojawić. Uzyskanie dokładnych i wiarygodnych wielkości SDR możliwe jest jedynie na podstawie danych pochodzących z ciągłych automatycznych pomiarów ruchu. Niestety z większości odcinków drogowych nie ma takich danych, więc SDR musi być wyznaczany w oparciu o krótkie okresy wyrywkowych pomiarów. W tym celu najczęściej stosuje się metodę wskaźnikową.
Źródło:
Archives of Civil Engineering; 2015, 61, 2; 141-160
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of quality parameters of a dry air separation product using machine learning methods
Przewidywanie parametrów jakościowych produktu suchej separacji węgla metodami uczenia maszynowego
Autorzy:
Żogała, Alina
Rzychoń, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/216889.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
artificial neural network
multiple linear regression
support vector machine
dry coal separation
sztuczna sieć neuronowa
sucha separacja węgla
wielokrotna regresja liniowa
maszyna wektorów nośnych
Opis:
The purpose of the work was to predict the selected product parameters of the dry separation process using a pneumatic sorter. From the perspective of application of coal for energy purposes, determination of process parameters of the output as: ash content, moisture content, sulfur content, calorific value is essential. Prediction was carried out using chosen machine learning algorithms that proved to be effective in forecasting output of various technological processes in which the relationships between process parameters are non-linear. The source of data used in the work were experiments of dry separation of coal samples. Multiple linear regression was used as the baseline predictive technique. The results showed that in the case of predicting moisture and sulfur content this technique was sufficient. The more complex machine learning algorithms like support vector machine (SVM) and multilayer perceptron neural network (MPL) were used and analyzed in the case of ash content and calorific value. In addition, k-means clustering technique was applied. The role of cluster analysis was to obtain additional information about coal samples used as feed material. The combination of techniques such as multilayer perceptron neural network (MPL) or support vector machine (SVM) with k-means allowed for the development of a hybrid algorithm. This approach has significantly increased the effectiveness of the predictive models and proved to be a useful tool in the modeling of the coal enrichment process.
Celem pracy było prognozowanie wybranych parametrów produktu procesu suchej separacji za pomocą sortera pneumatycznego. Z punktu widzenia zastosowania węgla do celów energetycznych niezbędne jest określenie parametrów procesowych wydobycia, takich jak: zawartość popiołu, zawartość wilgoci, zawartość siarki czy wartość kaloryczna. Prognozowanie przeprowadzono przy użyciu wybranych algorytmów uczenia maszynowego, które okazały się skuteczne w prognozowaniu wyjścia różnych procesów technologicznych, w których zależności między parametrami procesu są nieliniowe. Źródłem danych wykorzystanych w pracy były eksperymenty procesu suchej separacji węgla. Zastosowano wieloraką regresję liniową jako bazową metodę predykcyjną. Wyniki pokazały, że w przypadku przewidywania zawartości wilgoci i siarki technika ta była wystarczająca. Bardziej złożone algorytmy uczenia maszynowego, takie jak maszyna wektorów nośnych (SVM) i perceptron wielowarstwowy (MLP) zostały wykorzystane i przeanalizowane w przypadku zawartości popiołu i wartości opałowej. Ponadto wdrożono technikę k-średnich. Rolą analizy skupień było uzyskanie dodatkowych informacji na temat próbek węgla będących wejściem procesu. Połączenie technik, takich jak perceptron wielowarstwowy (MLP) lub maszyna wektorów nośnych (SVM) z metodą k-średnich pozwoliło na opracowanie hybrydowego algorytmu. Takie podejście znacznie zwiększyło efektywność modeli predykcyjnych i okazało się użytecznym narzędziem w modelowaniu procesu wzbogacania węgla.
Źródło:
Gospodarka Surowcami Mineralnymi; 2019, 35, 2; 119-138
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of discharge correction factor of modified Parshall flume using ANFIS and ANN
Autorzy:
Saran, D.
Tiwari, N. K.
Powiązania:
https://bibliotekanauki.pl/articles/1818494.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
Discharge Correction Factor
Adaptive Neuro-Fuzzy Inference System
artificial neural network
Multiple Non-linear Regression
parshall flumes
współczynnik korygujący wyładowania
adaptacyjny system neuronowo-rozmyty
sztuczna sieć neuronowa
regresja wielokrotna nieliniowa
Opis:
Purpose: To evaluate and compare the capability of ANFIS (Adaptive Neuro-Fuzzy-Inference System), ANN (Artificial Neural Network), and MNLR (Multiple Non-linear Regression) techniques in the estimation and formulation of Discharge Correction Factor (Cd) of modified Parshall flumes as based on linear relations and errors between input and output data. Design/methodology/approach: Acknowledging the necessity of further research in this field, experiments were conducted in the Hydraulics Laboratory of Civil Engineering Department, National Institute of Technology, Kurukshetra, India. The Parshall flume characteristics, associated longitudinal slopes and the discharge passing through the flume were varied. Consequent water depths at specific points in Parshall flumes were noted and the values of Cd were computed. In this manner, a data set of 128 observations was acquired. This was bifurcated arbitrarily into a training dataset consisting of 88 observations and a testing dataset consisting of 40 observations. Models developed using the training dataset were checked on the testing dataset for comparison of the performance of each predictive model. Further, an empirical relationship was formulated establishing Cd as a function of flume characteristics, longitudinal slope, and water depth at specific points using the MNLR technique. Moreover, Cd was estimated using soft computing tools; ANFIS and ANN. Finally, a sensitivity analysis was done to find out the flume variable having the greatest influence on the estimation of Cd. Findings: The predictive accuracy of the ANN-based model was found to be better than the model developed using ANFIS, followed by the model developed using the MNLR technique. Further, sensitivity analysis results indicated that primary depth reading (Ha) as input parameter has the greatest influence on the prediction capability of the developed model. Research limitations/implications: Since the soft computing models are data based learning, hence the prediction capability of these models may dwindle if data is selected beyond the current data range, which is based on the experiments conducted under specific conditions. Further, since the present study has faced time and facility constraints, hence there is still a huge scope of research in this field. Different lateral slopes, combined lateral- longitudinal slopes, and more modified Parshall flume models of larger sizes can be added to increase the versatility of the current research. Practical implications: Cd of modified Parshall flumes can be predicted using the ANN- based prediction model more accurately as compared to other considered techniques. Originality/value: The comparative analysis of prediction models, as well as the formulation of relation, has been conducted in this study. In all the previous works, little to no soft computing techniques have been applied for the analysis of Parshall flumes. Even the regression techniques have been applied only on Parshall flumes of standard sizes. However, this paper includes not only Parshall flume of standard size but also a modified Parshall flume in its pursuit of predicting Cd with the help of ANN and ANFIS based prediction models along with MNLR technique.
Źródło:
Archives of Materials Science and Engineering; 2020, 105, 1; 17--30
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies