Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Olszewski, J." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Interaktywny system edukacyjny wprowadzający w zagadnienie sztucznych sieci neuronowych
Interactive educational system introducing into issue of artificial neural networks
Autorzy:
Olszewski, T.
Boniecki, P.
Weres, J.
Powiązania:
https://bibliotekanauki.pl/articles/287816.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczna sieć neuronowa
edukacyjny system informatyczny
modelowanie neuronowe
sztuczna inteligencja
artificial neural network
educational computer system
artificial intelligence
Opis:
Dziedzina sztucznych sieci neuronowych ma swoje źródło w badaniach dotyczących sztucznej inteligencji. Stanowią one próbę naśladowania najważniejszych cech charakteryzujących biologiczne systemy nerwowe. Nazwą „sztuczne sieci neuronowe” (SSN) określa się dziś najczęściej symulatory programowe, umożliwiające modelowanie sieci na komputerach klasy PC. Sztuczne sieci neuronowe pozwalają na modelowanie systemów empirycznych o nieokreślonych zależnościach, trudnych do opisania tradycyjnymi, deterministycznymi metodami. Mają również zdolność generalizacji i uogólniania. Dzięki swym cechom SSN znajdują zastosowanie w rozwiązywaniu różnych problemów w wielu, niepowiązanych z sobą dziedzinach, jak: finanse, medycyna czy inżynieria rolnicza. Celowe jest więc wykonanie informatycznego systemu edukacyjnego, który pozwoli w łatwy i przystępny sposób zapoznać użytkownika z tematyką modelowania neuronowego.
The domain of artificial neural networks has its own source in the research of artificial intelligence. Artificial neural networks (ANN) are trying to imitate the most important features which represent the biological nervous systems. Nowadays in most cases the name of “artificial neural networks” define as programming simulators which allows the modeling of networks on PC computers. ANN permits to modeling empirical systems which have indefinable relationships and are hard to present in a traditional deterministic methods. They have as well the ability to generalize. Owing to its features, ANN applies in resolving variety of problems in many totally different areas, like: finances, medicine or agricultural engineering. It is purposeful to prepare educational informatics system which allows a user to get closer to subjects of neural modeling in easy and accessible way.
Źródło:
Inżynieria Rolnicza; 2005, R. 9, nr 8, 8; 293-298
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Konstrukcja bioreaktorów w kontekście zagadnienia modelowania procesu kompostowania
Bioreactors construction in the context of modeling composting process
Autorzy:
Olszewski, T.
Dach, J.
Boniecki, P.
Powiązania:
https://bibliotekanauki.pl/articles/335482.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
bioreaktor
konstrukcja
kompostowanie
sztuczna sieć neuronowa
bioreactor
construction
composting
artificial neural network
Opis:
Kompostowanie materii organicznej jest złożonym procesem, który charakteryzuje wiele parametrów chemiczno-fizycznych. Badanie procesu kompostowania w pryzmach w skali rzeczywistej wymaga nakładu środków i pracy. Doświadczenia tego typu w warunkach terenowych są trudne do kontrolowania i brak jest pewności co do powtarzalności warunków pomiarowych. Wykorzystanie rozbudowanej aparatury pomiarowej w badaniach polowych jest bardzo utrudnione m.in. ze względu na wpływ zmiennej pogody, ograniczenia czasowe (częstotliwość wykonywania pomiarów) itp. Modelowanie procesu rozkładu substancji organicznych w laboratoriach umożliwia jego dokładniejsze poznanie i kontrolę nad czynnikami mającymi wpływ na jego przebieg. W pracy przedstawiono przegląd bioreaktorów wykorzystywanych do modelowania procesu kompostowania. Zastosowanie różnych rozwiązań konstrukcyjnych, sprzętu pomiarowego i rejestracyjnego ma istotny wpływ na odwzorowanie warunków terenowych w doświadczeniach laboratoryjnych. Przedstawiono również przykłady wykorzystania sztucznych sieci neuronowych podczas doświadczeń z użyciem bioreaktorów, jako narzędzia do modelowania zjawisk związanych z procesami przemiany materii w aspekcie biologicznym, chemicznym i fizycznym.
Composting of organic matter is a complex process characterized by many physical and chemical parameters. The studies investigated in a real scale need lots of labour and financial sources. The experiments infield conditions are difficult to control and their repeatability is low. The usage of scientific set-up is limited because of heap dimensions, weather conditions and work time limitations. The modeling of organic matter decomposition in laboratories makes easier better control and survey of parameters which influence on a process. The paper presents review of bioreactors used for modeling of composting process. The application of different constructions, techniques of measurement and data registration has an important impact on projection of field conditions in a laboratory scale. The examples of usage of the artificial neural networks during experiments with bioreactors were also presented.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2007, 52, 2; 52-56
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie procesu kompostowania nawozów naturalnych w aspekcie generowania ciepła
Modeling of the natural fertilizers composting process in the heat generating aspect
Autorzy:
Olszewski, T.
Dach, J.
Jędruś, A.
Powiązania:
https://bibliotekanauki.pl/articles/335614.pdf
Data publikacji:
2005
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
kompostowanie
materiał organiczny
nawóz naturalny
ciepło
reaktor
sztuczna sieć neuronowa
modelowanie
heat generating
composting
natural fertilizer
organic matter
bioreactor
artificial neural network
Opis:
Kompostowanie polega na mikrobiologicznym rozkładzie substancji organicznych w warunkach tlenowych pod wpływem mikroorganizmów termofilnych (bakterii) i pleśni. Podczas kompostowania, którego faza termofilna może trwać z reguły od 4 do 7 tygodni wydzielają się duże ilości energii cieplnej. Szczególnie wysoki poziom utrzymuje się w początkowej fazie - gdyż temperatura wewnątrz pryzmy może wówczas osiągnąć 60-75°C i utrzymać się na tym poziomie przez okres kilkunastu, a nawet kilkudziesięciu dni. W celu przeprowadzenia badań laboratoryjnych, które będą oddawały warunki polowe w 2002 w Instytucie Inżynierii Rolniczej AR w Poznaniu zbudowano bioreaktor do badania przebiegu rozkładu odpadów organicznych. Dzięki odizolowaniu od warunków zewnętrznych i rozbudowanemu systemowi czujników bioreaktor jest doskonałym sprzętem badawczym, pozwalającym na zgromadzenie obszernej bazy danych umożliwiającej zbudowanie modelu kompostowania z uwzględnieniem wydzielającego się w jego trakcie ciepła. Jako narzędzie modelowania posłużyły sztuczne sieci neuronowe.
Composting process depends on microbiological decomposition of organic matter in oxygenic conditions proceeded by the thermopile microorganisms (bacteries) and moulds. During composting process, which thermopile phase can last from 4 to 7 weeks, there is a lot of heat energy emission. Especially high level of it is received in initial phase - because the temperature inside the composted pile can reach 60-75°C and stays on the level over 50°C for a dozen or even few dozen days. In order to carry out the laboratory experiments, which will fulfill the field conditions in 2002, at the Institute of Agricultural Engineering a bioreactor for the study of the organic material decomposition was constructed. Because of thermal isolation from outside conditions and complex sensor system, bioreactor is perfect experimental set-up, which allows to accumulate a large database. This fact makes possible to create composting model with placing emphasis on heat emission. As a modeling tool, the artificial neural network was used.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2005, 50, 2; 40-42
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies