Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural, S." wg kryterium: Wszystkie pola


Tytuł:
Neural modeling of plant tissue cultures: a review
Autorzy:
Zielinska, S.
Kepczynska, E.
Powiązania:
https://bibliotekanauki.pl/articles/81293.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial neural network
biomass
plant tissue
neural model
tissue culture
in vitro condition
micropropagation
radial neural network
neural network
somatic embryo
Źródło:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2013, 94, 3
0860-7796
Pojawia się w:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of artificial neural network and genetic algorithm to healthcarewaste prediction
Autorzy:
Arabgol, S.
Ko, H. S.
Powiązania:
https://bibliotekanauki.pl/articles/91848.pdf
Data publikacji:
2013
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
artificial neural network
ANN
application
hospital
genetic algorithm
GA
healthcare waste
Opis:
Prompt and proper management of healthcare waste is critical to minimize the negative impact on the environment. Improving the prediction accuracy of the healthcare waste generated in hospitals is essential and advantageous in effective waste management. This study aims at developing a model to predict the amount of healthcare waste. For this purpose, three models based on artificial neural network (ANN), multiple linear regression (MLR), and combination of ANN and genetic algorithm (ANN-GA) are applied to predict the waste of 50 hospitals in Iran. In order to improve the performance of ANN for prediction, GA is applied to find the optimal initial weights in the ANN. The performance of the three models is evaluated by mean squared errors. The obtained results have shown that GA has significant impact on optimizing initial weights and improving the performance of ANN.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2013, 3, 4; 243-250
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected problem of structure optimization for Artificial Neural Networks with forward connections
Autorzy:
Płaczek, S.
Powiązania:
https://bibliotekanauki.pl/articles/376117.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
artificial neural network
network structure
structure optimization
Opis:
The problem of Artificial Neural Network (ANN) structure optimization related to the definition of optimal number of hidden layers and distribution of neurons between layers depending on selected optimization criterion and inflicted constrains. The article presents the resolution of the optimization problem. The function describing the number of subspaces is given, and the minimum number of layers as well as the distribution of neurons between layers shall be found.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2014, 80; 191-197
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial neural network modelling to predict optimum power consumption in wood machining
Autorzy:
Tiryaki, S.
Malkocoglu, A.
Ozsahin, S.
Powiązania:
https://bibliotekanauki.pl/articles/52411.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Drewna
Tematy:
artificial neural network
modelling
optimization
power consumption
wood processing
planing
wood product
Źródło:
Drewno. Prace Naukowe. Doniesienia. Komunikaty; 2016, 59, 196
1644-3985
Pojawia się w:
Drewno. Prace Naukowe. Doniesienia. Komunikaty
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of adsorption efficiencies of Ni (II) in aqueous solutions with perlite via artificial neural networks
Autorzy:
Turp, S. M.
Powiązania:
https://bibliotekanauki.pl/articles/204724.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
wastewater
treatment efficiency
adsorption
perlite
artificial neural network
Opis:
This study investigates the estimated adsorption efficiency of artificial Nickel (II) ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II) ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II) ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2), and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.
Źródło:
Archives of Environmental Protection; 2017, 43, 4; 26-32
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural networks as a tool for georadar data processing
Autorzy:
Szymczyk, P.
Tomecka-Suchoń, S.
Szymczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/330009.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
neural network
artificial neural network
ground penetrating radar
geological structure
sinkhole
sieć neuronowa
sztuczna sieć neuronowa
georadar
penetracja gruntu
budowa geologiczna
zapadlisko górnicze
Opis:
In this article a new neural network based method for automatic classification of ground penetrating radar (GPR) traces is proposed. The presented approach is based on a new representation of GPR signals by polynomials approximation. The coefficients of the polynomial (the feature vector) are neural network inputs for automatic classification of a special kind of geologic structure—a sinkhole. The analysis and results show that the classifier can effectively distinguish sinkholes from other geologic structures.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 4; 955-960
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Neural Network for Testing Selected Specification Parameters of Voltage-Controlled Oscillator
Autorzy:
Grzechca, D.
Temich, S.
Powiązania:
https://bibliotekanauki.pl/articles/226212.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
specification driven testing
voltage controlled oscillator
ring oscillator
artificial neural network
Opis:
In this paper, the application of the Artificial Neural Network (ANN) algorithm has been used for testing selected specification parameters of voltage-controlled oscillator. Today, mixed electronic circuits specification time is an issue. An analog part of Phase Locked Loop is a voltage-controlled oscillator, which is very sensitive to variation of the technology process. Fault model for the integrated circuit voltage control oscillator (VCO) in ring topology is introduced and the before test stage classificatory is designed. In order to reduce testing time and keep the specification accuracy (approximation) on the high level, an artificial neural network has been applied. The features selection process and output coding for specification parameters are described. A number of different ANN have been designed and then compared with real specification of the VCO. The results obtained gives response in short time with high enough accuracy.
Źródło:
International Journal of Electronics and Telecommunications; 2018, 64, 2; 203-207
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A selected problem of the structure optimization and decomposition of the artificial neural network with cross-forward connections
Autorzy:
Płaczek, S.
Powiązania:
https://bibliotekanauki.pl/articles/97313.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
artificial neural network
structure optimization
decomposition
coordination
cross connection
Opis:
The problem of an Artificial Neural Network (ANN) structure optimization is related to the definition of the optimal number of hidden layers and the distribution of neurons between layers depending on a selected optimization criterion and inflicted constrains. Using a hierarchical structure is an accepted default way of defining an ANN structure. The following article presents the resolution of the optimization problem. The function describing the number of subspaces is given, and the minimum number of layers, as well as the distribution of neurons between layers, shall be found. The structure can be described using different methods, mathematical tools, and software or/and technical implementation. The ANN decomposition into hidden and output layers - the first step to build a two-level learning algorithm for cross-forward connections structure - is described, too.
Źródło:
Computer Applications in Electrical Engineering; 2014, 12; 597-608
1508-4248
Pojawia się w:
Computer Applications in Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Artificial Neural Networks for Defect Detection in Ceramic Materials
Autorzy:
Akinci, T. C.
Nogay, H. S.
Yilmaz, O.
Powiązania:
https://bibliotekanauki.pl/articles/176701.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
impulse noise
artificial neural network
ANN
defect detection
ceramic materials
Opis:
In this study, an artificial neural network application was performed to tell if 18 plates of the same material in different shapes and sizes were cracked or not. The cracks in the cracked plates were of different depth and sizes and were non-identical deformations. This ANN model was developed to detect whether the plates under test are cracked or not, when four plates have been selected randomly from among a total of 18 ones. The ANN model used in the study is a model uniquely tailored for this study, but it can be applied to all systems by changing the weight values and without changing the architecture of the model. The developed model was tested using experimental data conducted with 18 plates and the results obtained mainly correspond to this particular case. But the algorithm can be easily generalized for an arbitrary number of items.
Źródło:
Archives of Acoustics; 2012, 37, 3; 279-286
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model development of the external friction of granular vegetable materials on the basis of artificial neural networks
Autorzy:
Francik, S.
Fraczek, J.
Powiązania:
https://bibliotekanauki.pl/articles/25205.pdf
Data publikacji:
2001
Wydawca:
Polska Akademia Nauk. Instytut Agrofizyki PAN
Tematy:
granular vegetable material
artificial neural network
external friction
vegetable
Źródło:
International Agrophysics; 2001, 15, 4
0236-8722
Pojawia się w:
International Agrophysics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowych w procesach fotogrametrycznych
Application of neural networks to photogrammetric processes
Autorzy:
Mikrut, S.
Mikrut, Z.
Powiązania:
https://bibliotekanauki.pl/articles/129938.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
artificial neural network
image matching
digital photogrammetry
sztuczna sieć neuronowa
spasowanie obrazów
fotogrametria cyfrowa
Opis:
W niniejszym artykule poruszono problem wykorzystania sztucznych sieci neuronowych (SSN) w geoinformatyce obrazowej, ze szczególnym uwzględnieniem procesów fotogrametrycznych. Przedstawiono wyniki przeglądu literatury światowej oraz zaprezentowano rezultaty badań prowadzonych w ramach projektu dotyczącego użycia sieci do spasowania fotogrametrycznych zdjęć lotniczych. W oparciu o literaturę, przeanalizowano wyniki prac wykorzystujących sieci neuronowe do: klasyfikacji obrazów wielospektralnych, wydobywania cech, kalibracji kamer oraz spasowania obrazów. Zaprezentowano również wyniki własnych eksperymentów, bazujących na idei wykorzystania sieci opierającej się na wyborze specjalnej reprezentacji, która następnie jest wykorzystywana do spasowania obrazów fotogrametrycznych dla dwóch wybranych typów terenu. W badaniach wykorzystano sieci impulsujące ICM (Intersecting Cortical Model), będące jedną z wersji sieci PCNN (Pulse Coupled Neural Network), przy pomocy których wygenerowano tzw. podpisy obrazów (signatures), czyli kilkudziesięcioelementowe wektory, opisujące strukturę fragmentu obrazu. Wyniki badań częściowo potwierdzają słuszność przyjętych założeń, mimo występujących problemów związanych ze specyfiką obrazów fotogrametrycznych.
The paper discusses the use of artificial neural networks in geoinformatics, particularly in photogrammetric image analysis. It reviews the relevant international publications (including the ISPRS congress proceedings) and discusses the outcome of research on the use of networks for matching photogrammetric images. The paper shows also results of tests, described in the literature, in which neural networks were applied to perform tasks such as feature extraction, multispectral image classification, camera calibration and matching. The idea of using neural networks is based on the selection of special representations. The essence of the neural networks-based methodology consists of preparing suitable representations of image fragments and of using them toclassify various types of neural networks. One of the methods adopted was based on the distribution and direction of image gradient module value. The research was conducted on forty four sub-images, taken from aerial photographs of two Polish cities: Bytom and Cracow. The areas shown in those images differed in their terrain cover. The images were divided into three categories: full sub-images, sub-images divided into 4 parts, and sub-images divided into 6 small parts. The research involved the Intersecting Cortical Model (ICM), a version of the Pulse Coupled Neural Network (PCNN), with which the so-called image signatures, i.e., a few dozen-element vectors that describe the image structure were generated. The preliminary results partially confirm the correctness of the approach adopted, despite problems resulting from the complex nature of photogrammetric images.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2008, 18b; 409-421
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Variable valve timing scheduling in a 4-stroke internal combustion cylinder utilizing artificial neural networks
Autorzy:
Bapiri, S.
Chaghaneh, O.
Ghomashi, H.
Powiązania:
https://bibliotekanauki.pl/articles/103166.pdf
Data publikacji:
2017
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
variable valve timing
cylinder pressure
independent valve operation
artificial neural network
Opis:
The apparently simple structure of a four-stroke internal combustion cylinder belies the complicated problem of optimizing valve operation in response to a change in crankshaft rotation speed. The objective of this study was to determine the cylinder pressure for valve event angles in order to determine the optimal strategy for the timing of valve events when independently-actuated valves are available. In this work, an artificial neural network is applied to create a prediction matrix to anticipate the best variable valve timing approach according to rotation speed.
Źródło:
Advances in Science and Technology. Research Journal; 2017, 11, 3; 114-121
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pattern layer reduction for a generalized regression neural network by using a self-organizing map
Autorzy:
Kartal, S.
Oral, M.
Ozyildirim, B. M.
Powiązania:
https://bibliotekanauki.pl/articles/329728.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
generalized regression neural network
artificial neural network
self organizing map
nearest neighbour
reduced dataset
sztuczna sieć neuronowa
mapa samoorganizująca
metoda najbliższych sąsiadów
redukcja zbioru danych
Opis:
In a general regression neural network (GRNN), the number of neurons in the pattern layer is proportional to the number of training samples in the dataset. The use of a GRNN in applications that have relatively large datasets becomes troublesome due to the architecture and speed required. The great number of neurons in the pattern layer requires a substantial increase in memory usage and causes a substantial decrease in calculation speed. Therefore, there is a strong need for pattern layer size reduction. In this study, a self-organizing map (SOM) structure is introduced as a pre-processor for the GRNN. First, an SOM is generated for the training dataset. Second, each training record is labelled with the most similar map unit. Lastly, when a new test record is applied to the network, the most similar map units are detected, and the training data that have the same labels as the detected units are fed into the network instead of the entire training dataset. This scheme enables a considerable reduction in the pattern layer size. The proposed hybrid model was evaluated by using fifteen benchmark test functions and eight different UCI datasets. According to the simulation results, the proposed model significantly simplifies the GRNN’s structure without any performance loss.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 2; 411-424
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identification of radon anomalies in soil gas using decision trees and neural networks
Autorzy:
Zmazek, B.
Džeroski, S.
Torkar, D.
Vaupotič, J.
Kobal, I.
Powiązania:
https://bibliotekanauki.pl/articles/148699.pdf
Data publikacji:
2010
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
radon
soil gas
anomalies
decision trees
artificial neural network
earthquakes
Opis:
The time series of radon (222Rn) concentration in soil gas at a fault, together with the environmental parameters, have been analysed applying two machine learning techniques: (i) decision trees and (ii) neural networks, with the aim at identifying radon anomalies caused by seismic events and not simply ascribed to the effect of the environmental parameters. By applying neural networks, 10 radon anomalies were observed for 12 earthquakes, while with decision trees, the anomaly was found for every earthquake, but, undesirably, some anomalies appeared also during periods without earthquakes.
Źródło:
Nukleonika; 2010, 55, 4; 501-505
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda prognozowania szeregów czasowych przy użyciu sztucznych sieci neuronowych
The method used to predict time series using artificial neural networks
Autorzy:
Francik, S.
Powiązania:
https://bibliotekanauki.pl/articles/291511.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
prognozowanie
szereg czasowy
sztuczna sieć neuronowa
predicting
time series
artificial neural network
Opis:
Celem pracy było opracowanie metodyki prognozowania szeregów czasowych przy użyciu sztucznych sieci neuronowych. Prognozy wykonano zakładając klasyczny model tendencji rozwojowej. Opracowano ogólny algorytm opracowywania prognostycznego modelu neuronowego. Przedstawiono przykład zastosowania tego algorytmu do opracowania 9 modeli neuronowych dla zmiennych prognostycznych charakteryzujących wybrane maszyny rolnicze: kombajny zbożowe, pługi oraz siewniki rzędowe. Przeprowadzono analizę wrażliwości dla opracowanych modeli prognostycznych.
The purpose of the work was to develop methods for predicting time series using the artificial neural networks. The predictions were made assuming the classical development tendency model. The general algorithm for construction of prognostic neural model has been developed. The paper presents an example for using this algorithm to create 9 neural models for prognostic variables characterising selected farm machines: combine harvesters, ploughs and drill seeders. A sensitivity analysis was made for created prognostic models.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 6, 6; 53-59
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies