Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę ""Sztuczna sieć neuronowa"" wg kryterium: Wszystkie pola


Tytuł:
Algorytm uczący sztuczną sieć neuronową zbudowany w języku VBA for Excel
Learning algorithm constructed an artificial neural network in VBA for Excel
Autorzy:
Zajkowski, K.
Duer, S.
Powiązania:
https://bibliotekanauki.pl/articles/253605.pdf
Data publikacji:
2012
Wydawca:
Instytut Naukowo-Wydawniczy TTS
Tematy:
algorytm
sztuczna sieć neuronowa
VBA for Excel
algorithm
artificial neural network
Opis:
W artykule przedstawiono realizację sztucznej sieci neuronowej przedstawionej teoretycznie w poprzednim artykule w tej publikacji. Zadaniem sieci jest wyznaczenie rozwiązania równań zawierających współczynniki niezdefiniowane liczbowo, lecz obszarowo. Położenie obszaru zależy od mierzonych wartości elektrycznych oraz od dokładności pomiarowych. Dla pewnych wartości współczynników układu równań nie istnieją funkcje odwrotne równań wejściowych. W tym przypadku niemożliwe jest wyznaczenie rozwiązania układu równań metodami klasycznymi.
This paper presents the implementation of artificial neural network theory, which is presented in previous publication. The network is determine solutions of equations containing coefficients undefined numerically, but sectorally. The location of this area depends on the measured values, and the accuracy of electrical measurements. For certain values of the coefficients of the equations are not inverse functions of input equations. In this case, it is impossible to determine a solution of the equations of classical methods.
Źródło:
TTS Technika Transportu Szynowego; 2012, 9; 531-539, CD
1232-3829
2543-5728
Pojawia się w:
TTS Technika Transportu Szynowego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of industrial pollution by radial basis function networks
Autorzy:
Djebbri, N.
Rouainia, M.
Powiązania:
https://bibliotekanauki.pl/articles/207579.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
forecasting
RBF
artificial neural network
pollution
prognozowanie
sztuczna sieć neuronowa
zanieczyszczenie
Opis:
Atmospheric pollution has been receiving a significant interest for several decades since industries cause more and more pollution. Thanks to the development of many prediction techniques, scientists and industries are focusing more on pollution prediction. The aim of this work is to predict the two pollutant concentrations (NOx and CO) in industrial sites by a modified radial basis function (RBF) based neural network. The modification considered the spread parameter h of the activation function in the RBF network. In order to get the best network, the variations of this parameter for three cases were considered. In the first case, only pollutants concentrations variables were used, while in the second one, only the meteorological variables were utilized. In the third case, pollutants' concentrations were connected with meteorological variables. Based on calculation errors, the best model that ensures the best monitoring of pollutants concentration could be identified.
Źródło:
Environment Protection Engineering; 2018, 44, 3; 153-164
0324-8828
Pojawia się w:
Environment Protection Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rozpoznawanie obrazów z wykorzystaniem neuronowego klasyfikatora NBV
Pattern recognition using NBV neural classifier
Autorzy:
Dybała, J.
Powiązania:
https://bibliotekanauki.pl/articles/327664.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
rozpoznawanie obrazów
sztuczna sieć neuronowa
klasyfikator neuronowy
pattern recognition
artificial neural network
neural classifier
Opis:
W artykule przedstawiono neuronowy klasyfikator NBV o konstrukcji inspirowanej strukturą sieci neuronowej CP (ang. Counter Propagation), który wykorzystuje koncepcję stosowaną w klasyfikacji minimalnoodległościowej, a w swym działaniu nawiązuje do idei funkcjonowania klasyfikatorów SVM (ang. Support Vector Machine).
The article presents the NBV neural classifier whose structure has been inspired by the structure of CP (Counter Propagation) neural network, which uses the methods applied in the minimum-distance classification, while in its operation it draws on the idea of functioning of SVM (Support Vector Machines) classifiers.
Źródło:
Diagnostyka; 2009, 3(51); 105-112
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aircraft engine overhaul demand forecasting using ANN
Autorzy:
Kozik, P.
Sęp, J.
Powiązania:
https://bibliotekanauki.pl/articles/407331.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sztuczna sieć neuronowa
eksploatacja
naprawa
remont
części zamienne
artificial neural network
maintenance
repair
overhaul
spare parts forecasting
Opis:
Due to the unpredictable nature for aircraft maintenance repair parts demand, MRO (Maintenance, Repair, Overhaul) business perceive difficulties in forecasting and are currently looking for a superior forecasting solution. This paper deals with techniques applicable to predicting spare part demand replacement during helicopter PZL 10W engine overhaul - operating according to hard - time. The experimental results show new forecasting method based on hard - time as the predicted time of required demand and ANN technique as forecasting models predicted numbers of spare parts. The evolution for a new forecasting method, which will be a predictive error-forecasting model which compares and evaluates forecasting methods, based on their factor levels when faced with intermittent demand show as possibility of big changes in MRO lean manufacturing. The results confirm the continued superiority of the new method, whereas, most commonly leveraged methods such as moving average used by MRO business are found to be questionable, and consistently producing poor forecasting performance.
Źródło:
Management and Production Engineering Review; 2012, 3, 2; 21-26
2080-8208
2082-1344
Pojawia się w:
Management and Production Engineering Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pulverized coal combustion advanced control techniques
Zaawansowane metody sterowania procesem spalania pyłu węglowego
Autorzy:
Gromaszek, Konrad
Powiązania:
https://bibliotekanauki.pl/articles/408257.pdf
Data publikacji:
2019
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
combustion control
adaptive algorithm
artificial neural network
sterowanie procesem
algorytm adaptacyjny
sztuczna sieć neuronowa
Opis:
The paper describes the selected methods of adaptive control of the pulverized coal combustion process overview with various types of prognostic models. It was proposed to use a class of control methods that are relatively well established in industrial practice. The presented approach distinguishes the use of an additional source of information in the form of signals from an optical diagnostic system and models based on selected deep structures of recurrent networks. The research aim is to increase the efficiency of the combustion process in the power boiler, taking into account the EU emission standards, leading in consequence to sustainable energy and sustainable environmental engineering.
W artykule opisano wybrane metody adaptacyjnego sterowania przeglądem procesu spalania pyłu węglowego z wykorzystaniem określonych modeli prognostycznych. Zaproponowano użycie metod, które są stosunkowo dobrze znane w praktyce przemysłowej. Przedstawione podejście wyróżnia wykorzystanie dodatkowego źródła informacji w postaci sygnałów z optycznego systemu diagnostycznego i modeli opartych na strukturach sieci głębokich. Badania mają na celu zwiększenia efektywności procesu spalania w kotle energetycznym, z uwzględnieniem norm emisji UE, prowadząc w konsekwencji do zrównoważonej energii i zrównoważonej inżynierii środowiska.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2019, 9, 2; 41-45
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of deformation properties of coal measure sandstones through regression analyses and artificial neural networks
Autorzy:
Köken, Ekin
Powiązania:
https://bibliotekanauki.pl/articles/2073875.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
piaskowiec
sztuczna sieć neuronowa
deformacja
sandstone
Zonguldak
deformation properties
regression analysis
artificial neural network
Opis:
The deformation properties of rocks play a crucial role in handling most geomechanical problems. However, the determination of these properties in laboratory is costly and necessitates special equipment. Therefore, many attempts were made to estimate these properties using different techniques. In this study, various statistical and soft computing methods were employed to predict the tangential Young Modulus (Eti, GPa) and tangential Poisson’s Ratio (vti) of coal measure sandstones located in Zonguldak Hardcoal Basin (ZHB), NW Turkey. Predictive models were established based on various regression and artificial neural network (ANN) analyses, including physicomechanical, mineralogical, and textural properties of rocks. The analysis results showed that the mineralogical features such as the contents of quartz (Q, %) and lithic fragment (LF, %) and the textural features (i.e., average grain size, d50, and sorting coefficient, Sc) have remarkable impacts on deformation properties of the investigated sandstones. By comparison with these features, the mineralogical effects seem to be more effective in predicting the Eti and vti. The performance of the established models was assessed using several statistical indicators. The predicted results from the proposed models were compared to one another. It was concluded that the empirical models based on the ANN were found to be the most convenient tools for evaluating the deformational properties of the investigated sandstones.
Źródło:
Archives of Mining Sciences; 2021, 66, 4; 523--542
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowych w procesach fotogrametrycznych
Application of neural networks to photogrammetric processes
Autorzy:
Mikrut, S.
Mikrut, Z.
Powiązania:
https://bibliotekanauki.pl/articles/129938.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
artificial neural network
image matching
digital photogrammetry
sztuczna sieć neuronowa
spasowanie obrazów
fotogrametria cyfrowa
Opis:
W niniejszym artykule poruszono problem wykorzystania sztucznych sieci neuronowych (SSN) w geoinformatyce obrazowej, ze szczególnym uwzględnieniem procesów fotogrametrycznych. Przedstawiono wyniki przeglądu literatury światowej oraz zaprezentowano rezultaty badań prowadzonych w ramach projektu dotyczącego użycia sieci do spasowania fotogrametrycznych zdjęć lotniczych. W oparciu o literaturę, przeanalizowano wyniki prac wykorzystujących sieci neuronowe do: klasyfikacji obrazów wielospektralnych, wydobywania cech, kalibracji kamer oraz spasowania obrazów. Zaprezentowano również wyniki własnych eksperymentów, bazujących na idei wykorzystania sieci opierającej się na wyborze specjalnej reprezentacji, która następnie jest wykorzystywana do spasowania obrazów fotogrametrycznych dla dwóch wybranych typów terenu. W badaniach wykorzystano sieci impulsujące ICM (Intersecting Cortical Model), będące jedną z wersji sieci PCNN (Pulse Coupled Neural Network), przy pomocy których wygenerowano tzw. podpisy obrazów (signatures), czyli kilkudziesięcioelementowe wektory, opisujące strukturę fragmentu obrazu. Wyniki badań częściowo potwierdzają słuszność przyjętych założeń, mimo występujących problemów związanych ze specyfiką obrazów fotogrametrycznych.
The paper discusses the use of artificial neural networks in geoinformatics, particularly in photogrammetric image analysis. It reviews the relevant international publications (including the ISPRS congress proceedings) and discusses the outcome of research on the use of networks for matching photogrammetric images. The paper shows also results of tests, described in the literature, in which neural networks were applied to perform tasks such as feature extraction, multispectral image classification, camera calibration and matching. The idea of using neural networks is based on the selection of special representations. The essence of the neural networks-based methodology consists of preparing suitable representations of image fragments and of using them toclassify various types of neural networks. One of the methods adopted was based on the distribution and direction of image gradient module value. The research was conducted on forty four sub-images, taken from aerial photographs of two Polish cities: Bytom and Cracow. The areas shown in those images differed in their terrain cover. The images were divided into three categories: full sub-images, sub-images divided into 4 parts, and sub-images divided into 6 small parts. The research involved the Intersecting Cortical Model (ICM), a version of the Pulse Coupled Neural Network (PCNN), with which the so-called image signatures, i.e., a few dozen-element vectors that describe the image structure were generated. The preliminary results partially confirm the correctness of the approach adopted, despite problems resulting from the complex nature of photogrammetric images.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2008, 18b; 409-421
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuronowa klasyfikacja obrazów suszu warzywnego
Neural classification of images showing dried vegetables
Autorzy:
Koszela, K.
Weres, J.
Powiązania:
https://bibliotekanauki.pl/articles/287040.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
susz marchwiowy
rozpoznawanie obrazów
sztuczna sieć neuronowa
dried carrot
identification of images
artificial neural network
Opis:
Celem pracy badawczej było opracowanie modelu neuronowego do oceny rodzaju suszu marchwiowego i jego klasyfikacji na podstawie cyfrowych fotografii. Analizie i klasyfikacji poddane zostały trzy rodzaje suszu marchwiowego, dla których wybrano cechy charakterystyczne, które umożliwiały klasyfikację ze względu na rodzaj oraz jakość suszu. W wyniku przeprowadzonych badań wygenerowano cztery modele neuronowe typu perceptron wielowarstwowy.
The purpose of this research work was to develop a neural model allowing to assess dried carrot type and to classify it on the basis of digital photographs. Three dried carrot types were analysed and classified. Their specific qualities were selected, allowing classification according to dried carrot type and quality. Completed research allowed to generate four neural models of multiplayer perceptron type.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 8, 8; 61-67
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza twardości selera w czasie suszenia
Analysis of celery hardness during drying process
Autorzy:
Łapczyńska-Kordon, B.
Francik, S.
Powiązania:
https://bibliotekanauki.pl/articles/289364.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
twardość
sztuczna sieć neuronowa
model SSN
seler
hardness
SSN model
artificial neural network
celery
Opis:
W pracy przedstawiono próbę zastosowania modelu sformułowanego na bazie sztucznych sieci neuronowych do opisu zmian twardości selera w czasie konwekcyjnego suszenia w warunkach wymuszonego przepływu powietrza. Model opracowano na podstawie badań. Próbki selera w kształcie cylindrów o wymiarach 10x10 mm poddano suszeniu konwekcyjnemu w temperaturach: 60 i 70°C. Podczas suszenia w równych odstępach czasowych określano twardość materiału metodą Vickersa za pomocą mikrotwardościomierza PMT-3. Do opisu zmian twardości w zależności od zawartości wody, temperatury suszenia i rodzaju obróbki przed suszeniem zastosowano model opracowany za pomocą sztucznych sieci neuronowych SSN. Do budowy modelu zastosowano wielowarstwową jednokierunkową sztuczną sieć neuronową, wykorzystując do uczenia zmodyfikowany algorytm wstecznej propagacji błędu. Analizowano sieci o różnej architekturze w celu zoptymalizowania działania modelu sieciowego. Stwierdzono, że sieć o 3 neuronach w warstwie 1, 3 neuronach w warstwie 2 i 1 neuronie w warstwie wyjściowej jest optymalna. Błąd względny globalny pomiędzy wartościami otrzymanymi z doświadczeń i z obliczeń wyniósł 28,7%.
The paper presents an attempt of using a model created based on artificial neural networks for description of changes in celery hardness during convection drying under forced air circulation conditions. The model was developed based on the tests. Celery samples in a form of cylinders in size of 10x10 mm were put to convection drying at temperatures: 60 and 70°C. During the drying process material hardness was determined at equal time intervals based on the Vickers method using microhardness tester PMT-3. For description of hardness changes as a function of water content, drying temperature and type of treatment before drying a model developed based on artificial neural networks SSN was used. For creating the model a multilayer unidirectional neural network was employed, using a modified algorithm of backward error propagation for learning process. Networks with different architecture were analyzed in order to optimize actions of the network model. The analysis showed that the optimal network was the one with 3 neurons in layer 1, 3 neurons in layer 2 and 1 neuron in output layer. The global relative error between the values obtained from the experiments and from calculations was 28,7%.
Źródło:
Inżynieria Rolnicza; 2006, R. 10, nr 13(88), 13(88); 295-302
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do opisu przenikalności elektrycznej mąki
Using artificial neural networks to describe flour permittivity
Autorzy:
Łuczycka, D.
Pentoś, K.
Powiązania:
https://bibliotekanauki.pl/articles/290131.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
mąka
przenikalność elektryczna
sztuczna sieć neuronowa
flour
permittivity
artificial neural network
Opis:
Przenikalność elektryczna mąki zależy w znaczącym stopniu zarówno od jej składu chemicznego jak i granulacji. W pracy przedstawiono etapy tworzenia opartego o sztuczne sieci neuronowe modelu opisującego przenikalność elektryczną mąki w zależności od wyznaczanych dla niej zmiennych niezależnych. Przebadanie wielu różnych architektur sieci, jak również powtarzanie wielokrotne procesu uczenia zwiększa prawdopodobieństwo wyboru najlepszej sieci dla opisu analizowanych zależności.
To a large extent, flour permittivity depends both on flour chemical constitution and granulation. The paper presents individual stages for developing an artificial neural network-based model describing flour permittivity related to independent variables determined for it. Examination of many different network architectures and multiple repetitions of teaching process increase probability for selecting best network to describe the analysed relationships.
Źródło:
Inżynieria Rolnicza; 2010, R. 14, nr 2, 2; 43-47
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie sztucznych sieci neuronowych do oceny stopnia dojrzałości jabłek
Using artificial neural networks to assess apples ripeness degree
Autorzy:
Górski, M.
Kaleta, J.
Langman, J.
Powiązania:
https://bibliotekanauki.pl/articles/287326.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
jabłko
dojrzałość
sztuczna sieć neuronowa
ripeness
apple
artificial neural network
Opis:
Ocena stopnia dojrzałości jabłek polega na porównaniu kilku mierzalnych parametrów ze stabelaryzowanymi wartościami granicznymi i podjęciu decyzji czy oceniany owoc znajduje się w danym stadium dojrzałości. W pracy podjęto próbę zastosowania sztucznej sieci neuronowej jako klasyfikatora wykorzystywanego do oceny stopnia dojrzałości jabłek.
Assessment of apple ripeness degree involves comparing of several measurable parameters to their tabularised boundary values and deciding, whether a given fruit is currently at a certain ripeness stage. The scope of work included an attempt to use an artificial neural network as a classifier employed to assess ripeness degree of apples.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 7(105), 7(105); 53-56
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metoda prognozowania szeregów czasowych przy użyciu sztucznych sieci neuronowych
The method used to predict time series using artificial neural networks
Autorzy:
Francik, S.
Powiązania:
https://bibliotekanauki.pl/articles/291511.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
prognozowanie
szereg czasowy
sztuczna sieć neuronowa
predicting
time series
artificial neural network
Opis:
Celem pracy było opracowanie metodyki prognozowania szeregów czasowych przy użyciu sztucznych sieci neuronowych. Prognozy wykonano zakładając klasyczny model tendencji rozwojowej. Opracowano ogólny algorytm opracowywania prognostycznego modelu neuronowego. Przedstawiono przykład zastosowania tego algorytmu do opracowania 9 modeli neuronowych dla zmiennych prognostycznych charakteryzujących wybrane maszyny rolnicze: kombajny zbożowe, pługi oraz siewniki rzędowe. Przeprowadzono analizę wrażliwości dla opracowanych modeli prognostycznych.
The purpose of the work was to develop methods for predicting time series using the artificial neural networks. The predictions were made assuming the classical development tendency model. The general algorithm for construction of prognostic neural model has been developed. The paper presents an example for using this algorithm to create 9 neural models for prognostic variables characterising selected farm machines: combine harvesters, ploughs and drill seeders. A sensitivity analysis was made for created prognostic models.
Źródło:
Inżynieria Rolnicza; 2009, R. 13, nr 6, 6; 53-59
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie SSN do wyznaczania twardości ziarna pszenicy
Utilization of ANN to determine wheat grain hardness
Autorzy:
Hebda, T.
Francik, S.
Powiązania:
https://bibliotekanauki.pl/articles/287734.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
sztuczna sieć neuronowa
ziarno
twardość
zawartość białka
artificial neural network
grain
hardness
protein content
Opis:
W pracy opracowano modele wykorzystujące sztuczne sieci neuronowe do wyznaczania twardości ziarna pszenicy (odmiany Mewa, Korweta, Sakwa, Symfonia, Zyta i Elena). Po przebadaniu 100 sieci wybrano jako model sieć typu perceptron trójwarstwowy. Jako dane wejściowe istotne okazały się: grubości i szerokości ziarna oraz zawartości białka. Wybrana sieć neuronowa zachowała zdolność generalizacji - średni błąd względny dla danych testujących (nie wykorzystywanych w procesie uczenia) były nieznacznie większy niż dla danych walidacyjnych.
The paper presents developed models using artificial neural networks (ANN) to determine wheat grain hardness (Mewa, Korweta, Sakwa, Symfonia, Zyta and Elena varieties). A three-layer perceptron-type network was selected as a model after having tested 100 networks. Grain thickness and width and protein content turned out to be important as input data. Selected neural network maintained its ability to generalize - average relative error for testing data (not being used in learning process) was slightly higher than for validation data.
Źródło:
Inżynieria Rolnicza; 2006, R. 10, nr 12(87), 12(87); 181-188
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial neural network simulation of lower limb joint angles in normal and impaired human gait
Autorzy:
Błażkiewicz, M.
Wit, A.
Powiązania:
https://bibliotekanauki.pl/articles/306964.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
sztuczna sieć neuronowa
chód człowieka
symulacja chodu
artificial neural network
joint angle
gait simulation
Opis:
Simulating the complexities of lower limb motion can be useful for orthosis or rehabilitation planning. The aim of this study was to develop an artificial neural network (ANN) able to accurately simulate the changes in the angle of the ankle, knee and hip joints during the gait cycle, then to use it to simulate the impact of a restricted range of ankle and hip joint angle changes on the progression of the knee joint angle. Methods: Thirty four young healthy students participated in the study. Gait kinematics data were collected using the Vicon system, then analyzed with an ANN. Results: We developed an ANN able to accurately simulate the progression of joint angles of lower-limb motion; its simulation of the impact of restricted ankle and hip joint angular ranges in the on the knee joint indicate that the braking phase is critical. Conclusions: ANNs offer a useful research method in clinical biomechanics. Further research in this vein should expand our understanding of compensatory functions in the lower limbs.
Źródło:
Acta of Bioengineering and Biomechanics; 2018, 20, 3; 43-49
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of speaker dependent and speaker independent emotion recognition
Autorzy:
Rybka, J.
Janicki, A.
Powiązania:
https://bibliotekanauki.pl/articles/330055.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
speech processing
emotion recognition
EMO-DB
support vector machines
artificial neural network
przetwarzanie mowy
rozpoznawanie emocji
maszyna wektorów wspierających
sztuczna sieć neuronowa
Opis:
This paper describes a study of emotion recognition based on speech analysis. The introduction to the theory contains a review of emotion inventories used in various studies of emotion recognition as well as the speech corpora applied, methods of speech parametrization, and the most commonly employed classification algorithms. In the current study the EMO-DB speech corpus and three selected classifiers, the k-Nearest Neighbor (k-NN), the Artificial Neural Network (ANN) and Support Vector Machines (SVMs), were used in experiments. SVMs turned out to provide the best classification accuracy of 75.44% in the speaker dependent mode, that is, when speech samples from the same speaker were included in the training corpus. Various speaker dependent and speaker independent configurations were analyzed and compared. Emotion recognition in speaker dependent conditions usually yielded higher accuracy results than a similar but speaker independent configuration. The improvement was especially well observed if the base recognition ratio of a given speaker was low. Happiness and anger, as well as boredom and neutrality, proved to be the pairs of emotions most often confused.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 4; 797-808
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies