Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "learning software" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Artificial intelligence for software development : the present and the challenges for the future
Sztuczna inteligencja w wytwarzaniu oprogramowania : stan aktualny i wyzwania na przyszłość
Autorzy:
Korzeniowski, Łukasz
Goczyła, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/211290.pdf
Data publikacji:
2019
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
software development
artificial intelligence
machine learning
automated code generation
wytwarzanie oprogramowania
sztuczna inteligencja
uczenie maszynowe
automatyczne generowanie kodu
Opis:
Since the time when first CASE (Computer-Aided Software Engineering) methods and tools were developed, little has been done in the area of automated creation of code. CASE tools support a software engineer in creation the system structure, in defining interfaces and relationships between software modules and, after the code has been written, in performing testing tasks on different levels of detail. Writing code is still the task of a skilled human, which makes the whole software development a costly and error-prone process. It seems that recent advances in AI area, particularly in deep learning methods, may considerably improve the matters. The paper presents an extensive survey of recent work and achievements in this area reported in the literature, both from the theoretical branch of research and from engineer-oriented approaches. Then, some challenges for the future work are proposed, classified into Full AI, Assisted AI and Supplementary AI research fields.
Od czasu pojawienia się pierwszych metod i narzędzi CASE niewiele zrobiono w zakresie automatycznego wytwarzania oprogramowania. Narzędzia CASE wspierają deweloperów w tworzeniu struktury systemu, definiowaniu interfejsów i relacji między modułami oprogramowania oraz, po powstaniu kodu, w wykonywaniu zadań testowych na różnych poziomach szczegółowości. Pisanie kodu jest jednak nadal zadaniem wykwalifikowanego specjalisty, co powoduje, że cały proces wytwarzania oprogramowania jest kosztowny i podatny na błędy. Ostatnie postępy w obszarze sztucznej inteligencji, szczególnie w zakresie metod głębokiego uczenia maszynowego, mogą i powinny znacznie poprawić tę sytuację. W artykule przedstawiono przegląd dotychczasowych osiągnięć w tej dziedzinie, znanych z literatury przedmiotu, szczególnie w zakresie czysto teoretycznym, gdyż efekty inżynierskie znajdujące zastosowanie praktyczne są jak dotąd bardzo ograniczone. Następnie zaproponowano i opisano kilka kierunków przyszłych prac w tej dziedzinie, które zaklasyfikowano jako Full AI, Assisted AI i Supplementary AI, w kolejności wynikającej z oczekiwanego stopnia zautomatyzowania procesów wytwarzania oprogramowania.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2019, 68, 1; 15-32
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczna inteligencja (SI) w badaniach lingwistycznych
Artificial Intelligence (AI) in Linguistic Research
Autorzy:
Sztuk, Alicja
Powiązania:
https://bibliotekanauki.pl/articles/555501.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Warszawski. Wydział Lingwistyki Stosowanej
Tematy:
artificial intelligence
machine learning
linguistic intelligence
linguistic research
intelligent tutoring system
linguistic smart software system for glottodidactics and translation intelligent
voice recognition
chatbot
terminotics
Opis:
The main purpose of the paper is both to present and to highlight the wide range of artificial intelligence appliance in linguistic research. I intend to define the so called ‘linguistic intelligence’ in the sense of machine learning, based mainly on artificial neural networks. Linguistic intelligent solutions seem to be not only up-to-date but also very promising in the area of developing and improving any intelligent linguistic tools, such as intelligent tutoring systems that are able to interact with human being, or the voice (speech) recognition systems that are able to receive, interpret (understand) and sometimes even carry out spoken commands. Finally, I intend to present the area of so called ‘terminotics’. The term refers to the meeting point of three interrelated disciplines: terminology, computational linguistics and linguistic engineering. This branch is also assisted by computer tools and new technologies based on artificial intelligence and machine learning. These (tools) are mainly designed for term extraction and corpora development but lately there are also some new possibilities to use these tools to increase the quality of terminology infrastructure as well.
Źródło:
Applied Linguistics Papers; 2018, 25/4; 159-174
2544-9354
Pojawia się w:
Applied Linguistics Papers
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies