Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "artificial intelligence classification" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Potential and use of the googlenet ann for the purposes of inland water ships classification
Autorzy:
Bobkowska, Katarzyna
Bodus-Olkowska, Izabela
Powiązania:
https://bibliotekanauki.pl/articles/1573774.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
ship classification
image classification
geoinformatics
artificial intelligence
artificial neural network
Opis:
This article presents an analysis of the possibilities of using the pre-degraded GoogLeNet artificial neural network to classify inland vessels. Inland water authorities monitor the intensity of the vessels via CCTV. Such classification seems to be an improvement in their statutory tasks. The automatic classification of the inland vessels from video recording is a one of the main objectives of the Automatic Ship Recognition and Identification (SHREC) project. The image repository for the training purposes consists about 6,000 images of different categories of the vessels. Some images were gathered from internet websites, and some were collected by the project’s video cameras. The GoogLeNet network was trained and tested using 11 variants. These variants assumed modifications of image sets representing (e.g., change in the number of classes, change of class types, initial reconstruction of images, removal of images of insufficient quality). The final result of the classification quality was 83.6%. The newly obtained neural network can be an extension and a component of a comprehensive geoinformatics system for vessel recognition.
Źródło:
Polish Maritime Research; 2020, 4; 170-178
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial intelligence for supervised classification purposes: Case of the surface water quality in the Moulouya River, Morocco
Autorzy:
Manssouri, Imad
Talhaoui, Abdelghani
El Hmaidi, Abdellah
Boudad, Brahim
Boudebbouz, Bouchra
Sahbi, Hassane
Powiązania:
https://bibliotekanauki.pl/articles/1841945.pdf
Data publikacji:
2021
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
artificial intelligence
environment
supervised classification
the Moulouya River
water quality
Opis:
From a management perspective, water quality is determined by the desired end use. Water intended for leisure, drinking water, and the habitat of aquatic organisms requires higher levels of purity. In contrast, the quality standards of water used for hydraulic energy production are much less important. The main objective of this work is focused on the development of an evaluation system dealing with supervised classification of the physicochemical quality of the water surface in the Moulouya River through the use of artificial intelligence. A graphical interface under Matlab 2015 is presented. The latter makes it possible to create a classification model based on artificial neural networks of the multilayer perceptron type (ANN-MLP). Several configurations were tested during this study. The configuration [9 8 3] retained gives a coefficient of determination close to the unit with a minimum error value during the test phase. This study highlights the capacity of the classification model based on artificial neural networks of the multilayer perceptron type (ANN-MLP) proposed for the supervised classification of the different water quality classes, determined by the calculation of the system for assessing the quality of surface water (SEQ-water) at the level of the Moulouya River catchment area, with an overall classification rate equal to 98.5% and a classification rate during the test phase equal to 100%.
Źródło:
Journal of Water and Land Development; 2021, 50; 240-247
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja mikroskopowych obrazów skał przy wykorzystaniu sieci neuronowych
Classification of the microscopic images of rocks with the use of neural networks
Autorzy:
Młynarczuk, M.
Bielecka, M.
Ślipek, B.
Powiązania:
https://bibliotekanauki.pl/articles/394187.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
automatyczna klasyfikacja skał
obrazy mikroskopowe
sieci neuronowe
sztuczna inteligencja
SOM
MLP
LVQ
automatic classification of rocks
microscopic images
neural networks
artificial intelligence
Opis:
Klasyfikacja skał stanowi ważny aspekt w wielu zagadnieniach górnictwa i geologii inżynierskiej. Automatyzacja procesu klasyfikacji mikroskopowych obrazów skał może przyczynić się do usprawniania przetwarzania ogromnych zbiorów fotografii skał, poprzez jego przyspieszenie i wyeliminowanie wpływu subiektywnej oceny obserwatora na końcowy wynik klasyfikacji. Podczas pierwszego etapu badan opisanych w tym artykule wykorzystano zbiór 2700 mikroskopowych obrazów szlifów cienkich 9 skał, różniących się od siebie cechami petrograficznymi. Próbki skał zostały opisane 13-wymiarowym wektorem cech. Przy użyciu trzech różnych sieci neuronowych: dwuwarstwowej sieci jednokierunkowej (multi-layer feed-forward perceptron, MLP), samoorganizującej mapy Kohonena (self organizing Kohonen maps, SOM) oraz kwantyzacji wektorowej (learning vector quantization, LVQ), fotografie, po wcześniejszym treningu sieci odseparowanymi podzbiorami próbek, zostały poddane procesowi automatycznej klasyfikacji. Stukrotne powtarzanie losowania podzbiorów wykorzystywanych do treningu sieci oraz powtarzanie algorytmu uczenia sieci i rozpoznawania zdjęć pozwoliło na uzyskanie statystycznie wiarygodnych wyników, których wartość średnia wyniosła 99,4%. Następnie zbiór skał został zwiększony do łącznej wielkości 6300 zdjęć reprezentujących 21 różnych skał, a badania zostały powtórzone z zachowanie wektora cech oraz parametrów nauki sieci. Wynik średni poprawnych klasyfikacji dla powiększonego zbioru obrazów wyniósł 98,30%.
Rock classification is an inherent part of numerous aspects of geology and engineering geology. Automating the classification of the microscopic images of rocks may result in improvements in analyzing vast sets of rocks' images by speeding up their recognition and eliminating the influence of the observer's subjective judgment in the final classification results. A set of 2,700 microscopic images of thin sections of 9 rocks, which differ in petrographic features, was used during the first step of the study described in the following article. Samples were displayed in a thirteen-dimensional feature space. With the use of three different neural networks multi-layer feed-forward perceptron (MLP), self-organizing Kohonen maps (SOM), and learning vector quantization (LVQ) ? images were subjected to an automated classification process preceded by the network's training with the use of isolated subset samples. Centuple repetition of subset drawings, which were used to train the network by repeating the self-learning network and images recognition algorithm, led to the achievement of statistically trustworthy results with a mean at the level of 99.4 %, and for the best drawing at 99.71%. Afterwards, the rocks set was extended to a total volume of 6,300 images of 21 different rocks, and the test was repeated preserving the feature space and self-learning network parameters. The average score of correct classifications for the extended images set was 98.30%, with the best score at 98.95%.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2014, 86; 27-38
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe Kohonena jako narzędzie w taksonomii paleontologicznej - metodyka oraz zastosowanie na przykładzie późnokredowych belemnitów
Artificial Kohonen neural networks as a tool in paleontological taxonomy - an introduction and application to Late Cretaceous belemnites
Autorzy:
Remin, Z.
Powiązania:
https://bibliotekanauki.pl/articles/2074559.pdf
Data publikacji:
2008
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
paleontologia
sztuczna inteligencja
sieci neuronowe Kohonena
samoorganizujących się sieci Kohonena
klasyfikacja
belemnity
górna kreda
paleontology
artificial intelligence
artificial neural networks
Kohonen neural networks
self-organizing map
classification
belemnites
Upper Cretaceous
Opis:
Artificial neural networks (ANNs), the computer software or systems that are able to "learn" on the basis of previously collected input data sets are proposed here as a new useful tool in paleontological modeling. Initially ANNs were designed to imitate the structure and function of natural neural systems such as the human brain. They are commonly used in many natural researches such as physics, geophysics, chemistry, biology, applied ecology etc. Special emphasis is put on the Kohonen self-organizing mapping algorithm, used in unsupervised networks for ordination purposes. The application of ANNs for paleontology is exemplified by study of Late Cretaceous belemnites. The Kohonen networks objectively subdivided the belemnite material] ~ 750 specimens) into consistent groups that could be treated as monospecific. The possibility of transferring these results to the language of classical statistics is also presented. Further development and possibility of use of ANNs in various areas of paleontology, paleobiology and paleoecology is briefly discussed.
Źródło:
Przegląd Geologiczny; 2008, 56, 1; 58-66
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies