Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nonlinear approximation" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Solutions to p(x)-Laplace type equations via nonvariational techniques
Autorzy:
Avci, M.
Powiązania:
https://bibliotekanauki.pl/articles/255416.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Leray-Lions type operator
nonlinear monotone operator
approximation
variable Lebesgue spaces
Opis:
In this article, we consider a class of nonlinear Dirichlet problems driven by a Leray-Lions type operator with variable exponent. The main result establishes an existence property by means of nonvariational arguments, that is, nonlinear monotone operator theory and approximation method. Under some natural conditions, we show that a weak limit of approximate solutions is a solution of the given quasilinear elliptic partial differential equation involving variable exponent.
Źródło:
Opuscula Mathematica; 2018, 38, 3; 291-305
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Two steps piecewise affine identification of nonlinear systems
Autorzy:
Stevek, J.
Szucs, A.
Kvasnica, M.
Fikar, M.
Kozak, S.
Powiązania:
https://bibliotekanauki.pl/articles/229499.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
piecewise affine systems
piecewise linear
approximation
nonlinear systems
orthogonal polynomials
basis function expansion
Opis:
Given a set of input-output measurements, the paper proposes a method for approximation of a nonlinear system by a piecewise affine model (PWA). First step of the two-stage procedure is identification from input-output data, in order to obtain an appropriate nonlinear function in analytic form. The analytic expression of the model can be represented either by a static nonlinear function or by a dynamic system and can be obtained using a basis function expansion modeling approach. Subsequently we employ nonlinear programming to derive optimal PWA approximation of the identified model such that the approximation error is minimized. Moreover, we show that approximation of multivariate systems can be transformed into a series of one-dimensional approximations, which can be solved efficiently using standard optimization techniques.
Źródło:
Archives of Control Sciences; 2012, 22, 4; 371-388
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Struktury i algorytmy współdziałania regulacji predykcyjnej i bieżącej optymalizacji ekonomicznej
Structures and algorithms of co-operation of predictive control and on-line economic optimisation
Autorzy:
Ławryńczuk, M.
Marusak, P.
Tatjewski, P.
Powiązania:
https://bibliotekanauki.pl/articles/153748.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
regulacja predykcyjna
optymalizacja
aproksymacja
linearyzacja
systemy nieliniowe
sterowanie z ograniczeniami
predictive control
optimisation
approximation
linearisation
nonlinear control systems
constrained control
Opis:
Celem pracy jest omówienie zagadnienia współpracy algorytmów regulacji predykcyjnej z nieliniową optymalizacją ekonomiczną. Problem ten jest szczególnie istotny wówczas, gdy dynamika zmian zakłóceń jest porównywalna z dynamiką procesu, ponieważ zastosowanie klasycznej warstwowej (hierarchicznej) struktury sterowania z rzadko powtarzaną optymalizacją ekonomiczną może nie być efektywne. Omawiane są dwie klasy struktur. W pierwszym przypadku stosuje się pomocniczą optymalizację ekonomiczną, której zadaniem jest aktualizacja punktu pracy poprzedzająca każdą interwencję algorytmu regulacji predykcyjnej. W dodatkowym liniowym lub kwadratowym zadaniu optymalizacji ekonomicznej stosuje się aktualizowaną na bieżąco liniową, liniowo-kwadratową lub odcinkowo-liniową aproksymację modelu. W drugim przypadku zadanie optymalizacji ekonomicznej i algorytm regulacji predykcyjnej są zintegrowane w pojedynczym problemie optymalizacji. Aby ograniczyć nakład obliczeń stosuje się aktualizowaną na bieżąco liniową lub liniowo-kwadratową aproksymację modelu, dzięki czemu otrzymuje się zadanie optymalizacji ekonomicznej w postaci problemu programowania kwadratowego.
The paper is concerned with co-operation of model predictive control (MPC) algorithms with nonlinear economic optimisation. The problem is particularly important when dynamics of disturbances is comparable with dynamics of the process itself, since in such cases application of the classical multilayer (hierarchical) structure with infrequent economic optimisation may be not efficient. Two classes of control structures are investigated. In the first class an additional simplified optimisation is used which recalculates the operating point as frequently as the MPC controller executes. In the supplementary linear or quadratic programming optimisation problem approximate linear, linear-quadratic (updated on-line) or piecewise-linear models of the process are used. In the second class the economic optimisation and MPC manipulated variables computational load, approximate linear or linear-quadratic (updated on-line) models are used, then the resulting optimisation problem is of quadratic programming type.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 10, 10; 55-61
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Determining the weights of a Fourier series neural network on the basis of the multidimensional discrete Fourier transform
Autorzy:
Halawa, K.
Powiązania:
https://bibliotekanauki.pl/articles/907904.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa ortogonalna
szereg Fouriera
transformata Fouriera
aproksymacja
system nieliniowy
orthogonal neural networks
Fourier series
fast Fourier transform
approximation
nonlinear system
Opis:
This paper presents a method for training a Fourier series neural network on the basis of the multidimensional discrete Fourier transform. The proposed method is characterized by low computational complexity. The article shows how the method can be used for modelling dynamic systems.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2008, 18, 3; 369-375
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies