- Tytuł:
- Approximate controllability of the impulsive semilinear heat equation
- Autorzy:
-
Leiva, H.
Merentes, N. - Powiązania:
- https://bibliotekanauki.pl/articles/357798.pdf
- Data publikacji:
- 2015
- Wydawca:
- Politechnika Rzeszowska im. Ignacego Łukasiewicza. Oficyna Wydawnicza
- Tematy:
-
impulsive semilinear heat equation
approximate controllability
Rothe's fixed point theorem
functional analysis
teoria punktu stałego
przestrzeń Banacha
równanie przewodnictwa ciepła
sterowalność
analiza funkcjonalna - Opis:
- In this paper we apply Rothe's Fixed Point Theorem to prove the interior approximate controllability of the following semilinear impulsive Heat Equation \[ \begin{cases} z_{t} = \Delta z + 1_{\omega}u(t,x) + f(t,z,u(t,x)), & \text{in} \quad (0,\tau] \times \Omega, t \neq t_{k}) \\ z = 0, & \text{on} \quad (0, \tau) \times \delta\Omega,\\ z(0,x) = z_{0}(x), & x \in \Omega, \\ z(t_{k}^{+}, x) = z(t_{k}^{-}, x) + I_{k}(t_{k},z(t_{k},x)u(t_{k},x)), & x \in \Omega, \end{cases} \] where k = 1, 2, . . . , p, $\Omega$ is a bounded domain in $\mathbb{R}^{N}(N \geq 1), z_{0} \in L_{2}(\Omega), \omega$ is an open nonempty subset of $\Omega$, $1_{\omega}$ denotes the characteristic function of the set $\omega$, the distributed control $u$ belongs to $C\left([0, \tau]; L_{2}\left(\Omega\right)\right)$ and $f,I_{k} \in C([0, \tau] \times \mathbb{R} \times \mathbb{R}; \mathbb{R}), k = 1, 2, 3, \ldots, p$, such that \[ |f(t,z,u)| \leq a_{0}|z|^{\alpha_{0}} + b_{0}|u|^{\beta_{0}} +c_{0}, \quad u \in \mathbb{R}, z \in \mathbb{R}. \] \[ |I_{k}(t,z,u)| \leq a_{k}|z|^{\alpha_{k}} + b_{k}|u|^{\beta_{k}} +c_{k}, k=1,2,3 \ldots, pu \in \mathbb{R}, z \in \mathbb{R} \] with $\frac{1}{2} \leq \alpha_{k} < 1, \frac{1}{2} \leq \beta_{k} < 1, k= 0,1,2,3, \ldots, p$ Under this condition we prove the following statement: For all open nonempty subsets $\omega$ of $\Omega$ the system is approximately controllable on $[0, \tau]$. Moreover, we could exhibit a sequence of controls steering the nonlinear system from an initial state $z_{0}$ to an $\epsilon$ neighborhood of the nal state $z_{1}$ at time $\tau > 0$.
- Źródło:
-
Journal of Mathematics and Applications; 2015, 38; 85-104
1733-6775
2300-9926 - Pojawia się w:
- Journal of Mathematics and Applications
- Dostawca treści:
- Biblioteka Nauki