Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "potassium salt" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Nutrient uptake, proline content and antioxidant enzymes activity of pepper (Capsicum annuum L.) under higher electrical conductivity of nutrient solution created by nitrate or chloride salts of potassium and calcium
Autorzy:
Ahmadi, M.
Souri, M.K.
Powiązania:
https://bibliotekanauki.pl/articles/12611712.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Przyrodniczy w Lublinie. Wydawnictwo Uniwersytetu Przyrodniczego w Lublinie
Tematy:
plant cultivation
chilli pepper
Capsicum annuum
nutrient uptake
proline content
antioxidant enzyme
electrical conductivity
nutrient solution
chloride salt
potassium salt
calcium salt
Opis:
This study was conducted to evaluate the effects of higher conductivity of nutrient solution created by nitrate or chloride salts of potassium and calcium on growth characteristics of pepper plants (Capsicum annuum var annuum) during four months of growth period. Two EC5 and EC8 dS/m of Hoagland nutrient solutions were prepared using various salt combinations, namely: KCl + CaCl2, KNO3 + CaNO3, and KNO3 + CaNO3 + NaCl. Hoagland nutrient solution with EC 1.8 dS/m served as a control. Higher conductivity treatments had different effects on pepper plant growth. The most significant reduction in growth parameters of plant height, shoot fresh weight, fruit yield and nutrients uptake was in plants treated with KCl + CaCl2 particularly at EC8. Application of KNO3 + CaNO3 particularly at EC5, showed no difference as compared to the control regarding many growth parameters. Application of KNO3 + CaNO3 at EC5 resulted in higher shoot fresh weight compared to the control. All salinity treatments, except from KNO3 + CaNO3 at EC5, reduced the fruit yield compared to the control. Treatments of KCl + CaCl2 and KNO3 + CaNO3 + NaCl particularly at EC8 of nutrient solution, resulted in higher leaf proline concentration, catalase and peroxidase enzymes activity compared to the control. Other conductivity treatments showed no difference in catalase or peroxidase enzymes activities. Significantly the lowest amount of leaf N, K, Mg and Ca was in KCl + CaCl2 at EC8. On the other hand, the highest leaf macronutrient concentrations were in KNO3 + CaNO3 at EC5 and/or EC8 that showed only higher leaf N and Ca values compared to the control. Leaf micronutrient concentrations were the highest in KNO3 + CaNO3 at EC5 that generally showed no difference with control plants. However, application of KCl + CaCl2 particularly at EC8 and to less extent KNO3 + CaNO3 + NaCl at EC8, reduced the leaf micronutrient concentrations. Application of KNO3 + CaNO3 at EC5 increased and KCl + CaCl2 or KNO3 + CaNO3 + NaCl at EC8 decreased the leaf Fe concentration compared to control plants.
Źródło:
Acta Scientiarum Polonorum. Hortorum Cultus; 2019, 18, 5; 113-122
1644-0692
Pojawia się w:
Acta Scientiarum Polonorum. Hortorum Cultus
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Changes in ion (K, Ca and Na) regulation, antioxidant enzyme activity and photosynthetic pigment content in melon genotypes subjected to salt stress - a mixture modeling analysis
Autorzy:
Erdinc, C.
Powiązania:
https://bibliotekanauki.pl/articles/11885877.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Przyrodniczy w Lublinie. Wydawnictwo Uniwersytetu Przyrodniczego w Lublinie
Tematy:
Turkey
arid habitat
semi-arid habitat
plant cultivation
muskmelon
Cucumis melo
plant genotype
antioxidant enzyme
photosynthetic pigment content
calcium ion
potassium ion
sodium ion
salt stress
Opis:
The present study aimed to identify the response of melon accessions and cultivars to salt stress in terms of ion exchange, enzyme activity, lipid peroxidation and photosynthetic pigment contents by mixture modelling. In mixture modeling, it is expected that the data set demonstrates a heterogeneous structure. This heterogeneity is characterized as unobservable heterogeneity. The data set’s heterogeneity produces severe deviations in the parameter assessments and the standard deviations. Heterogeneity is overcome when the data set separates itself into homogeneous sub-populations. Mixture modeling was performed using the Mclust mixture cluster program of the statistical software package R 5.2.3. Sub-populations were constructed by evaluating genotypes according to studied traits and correlation analysis was performed using the SPSS software package. The seedlings of 13 melon genotypes were harvested two weeks after salt application (0 mM or 50 mM NaCl) when symptoms of salt stress were observed. Nutrient contents and ratios (K, Ca, Na, K : Na and Ca : Na); superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities malondialdehyde (MDA) chlorophyll a, chlorophyll b, total chlorophyll and carotenoid contents were measured. Mixture modeling and correlation analysis were used in evaluating the experimental data sets. Differences in responses to salt application were observed among genotypes. While all genotypes exhibited negative responses in terms of K : Na ratio, which is an important parameter of salt tolerance, the smallest decreases in K : Na ratios were observed in the YYU-11 (–57.09%) and YYU-4 (–58.78%) genotypes, indicating them to be the most tolerant to salt stress. In general, enzyme activity decreased in response to salt application, although the responses varied among genotypes, especially with regard to CAT and APX activity. The YYU-29 genotype was notable as the genotype with the highest K : Na ratio (1.79) as well as the smallest change in MDA content under salt stress.
Źródło:
Acta Scientiarum Polonorum. Hortorum Cultus; 2018, 17, 1; 165-183
1644-0692
Pojawia się w:
Acta Scientiarum Polonorum. Hortorum Cultus
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies