Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "labeling" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Trees Whose Even-Degree Vertices Induce a Path are Antimagic
Autorzy:
Lozano, Antoni
Mora, Mercè
Seara, Carlos
Tey, Joaquín
Powiązania:
https://bibliotekanauki.pl/articles/32304141.pdf
Data publikacji:
2022-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
antimagic labeling
tree
Opis:
An antimagic labeling of a connected graph G is a bijection from the set of edges E(G) to {1, 2, . . ., |E(G)|} such that all vertex sums are pairwise distinct, where the vertex sum at vertex v is the sum of the labels assigned to edges incident to v. A graph is called antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel conjectured that every simple connected graph other than K2 is antimagic; however the conjecture remains open, even for trees. In this note we prove that trees whose vertices of even degree induce a path are antimagic, extending a result given by Liang, Wong, and Zhu [Anti-magic labeling of trees, Discrete Math. 331 (2014) 9–14].
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 3; 959-966
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Antimagic Labeling of Some Biregular Bipartite Graphs
Autorzy:
Deng, Kecai
Li, Yunfei
Powiązania:
https://bibliotekanauki.pl/articles/32222542.pdf
Data publikacji:
2022-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
antimagic labeling
bipartite
biregular
Opis:
An antimagic labeling of a graph G = (V, E) is a one-to-one mapping from E to {1, 2, . . ., |E|} such that distinct vertices receive different label sums from the edges incident to them. G is called antimagic if it admits an antimagic labeling. It was conjectured that every connected graph other than K2 is antimagic. The conjecture remains open though it was verified for several classes of graphs such as regular graphs. A bipartite graph is called (k, k′)-biregular, if each vertex of one of its parts has the degree k, while each vertex of the other parts has the degree k′. This paper shows the following results. (1) Each connected (2, k)-biregular (k ≥ 3) bipartite graph is antimagic; (2) Each (k, pk)-biregular (k ≥ 3, p ≥ 2) bipartite graph is antimagic; (3) Each (k, k2 + y)-biregular (k ≥ 3, y ≥ 1) bipartite graph is antimagic.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 4; 1205-1218
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On super (a,d)-edge antimagic total labeling of certain families of graphs
Autorzy:
Roushini Leely Pushpam, P.
Saibulla, A.
Powiązania:
https://bibliotekanauki.pl/articles/743252.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge weight
magic labeling
antimagic labeling
ladder
fan graph
prism and web graph
Opis:
A (p, q)-graph G is (a,d)-edge antimagic total if there exists a bijection f: V(G) ∪ E(G) → {1, 2,...,p + q} such that the edge weights Λ(uv) = f(u) + f(uv) + f(v), uv ∈ E(G) form an arithmetic progression with first term a and common difference d. It is said to be a super (a, d)-edge antimagic total if the vertex labels are {1, 2,..., p} and the edge labels are {p + 1, p + 2,...,p + q}. In this paper, we study the super (a,d)-edge antimagic total labeling of special classes of graphs derived from copies of generalized ladder, fan, generalized prism and web graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 3; 535-543
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies