Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "parametric models" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Model proporcjonalnego hazardu Coxa przy różnych sposobach kodowania zmiennych
The Cox proportional hazard model for different methods of encryption of variables
Autorzy:
Markowicz, Iwona
Stolorz, Beata
Powiązania:
https://bibliotekanauki.pl/articles/1808301.pdf
Data publikacji:
2009-06-30
Wydawca:
Główny Urząd Statystyczny
Tematy:
analiza przeżycia
modele semiparametryczne
model regresji Coxa
kodowanie
survival analysis
semi-parametric models
Cox regression model
encryption
Opis:
Metody analizy przeżycia są coraz częściej stosowane w badaniach zjawisk społeczno-ekonomicznych. Ze względu na brak konieczności znajomości rozkładu badanej zmiennej losowej szczególną wagę przywiązuje się do modeli nieparametrycznych bądź semiparametrycznych. Coraz powszechniej wykorzystywane są one do badania zjawisk innych niż czas trwania życia ludzkiego. Warunkiem stosowania modeli analizy przeżycia jest odpowiednia baza danych umożliwiająca wyznaczenie czasu trwania zdefiniowanego stanu dla poszczególnych jednostek badanej zbiorowości. Zazwyczaj są to badania retrospektywne z wykorzystaniem sporządzanych rejestrów. Przykładem takiej bazy danych jest rejestr bezrobotnych. Celem artykułu jest wskazanie wpływu sposobu kodowania zmiennych na oszacowania parametrów modelu regresji Coxa i ich interpretację. Autorki przedstawiły również związek między parametrami modelu szacowanymi dla danych zakodowanych w dwojaki sposób. Badaną kohortę stanowią osoby bezrobotne wyrejestrowane w określonym okresie czasu. Podziału na podgrupy dokonano ze względu na wiek, który jest determinantą czasu poszukiwania pracy.
Methods of survival analysis are more and more often used in analysis of social and economic occurrences. Due to lack of distributional information regarding the random variable, much attention is put on non-parametric or semi-parametric models. They are more and more commonly used for analysis of occurrences different than life expectancy. The condition of use of models of survival analysis is appropriate database that makes possible estimation of duration time of defined state for particular elements of analysed population. They are usually retrospective analyses with use of records. The example of such database is unemployment records. The article presents results of analysis of influence of encryption of variables on estimation of parameters of the Cox proportional hazard model and their interpretation. The authors also presented correlation between parameters of the model estimated for the data encrypted in two ways. The cohort consisted of the unemployed persons unregistered in specific period. Sub-clusters were allocated with respect to age that is a determinant of period of waiting for a job.
Źródło:
Przegląd Statystyczny; 2009, 56, 2; 106-115
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Examining Selected Theoretical Distributions of Life Expectancy to Analyse Customer Loyalty Durability. The Case of a European Retail Bank
Ocena wybranych rozkładów teoretycznych trwania życia do analizy lojalności klientów na przykładzie europejskiego banku detalicznego
Autorzy:
Kubacki, Dominik
Kubacki, Robert
Powiązania:
https://bibliotekanauki.pl/articles/1033690.pdf
Data publikacji:
2020-11-04
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
analiza przeżycia
wartość życiowa klienta
bankowość
modele parametryczne
estymator Kaplana–Meiera
survival analysis
customer lifetime value
banking
parametric models
Kaplan–Meier estimator
Opis:
One of the key elements related to calculating Customer Lifetime Value is to estimate the duration of a client’s relationship with a bank in the future. This can be done using survival analysis. The aim of the article is to examine which of the known distributions used in survival analysis (Weibull, Exponential, Gamma, Log‑normal) best describes the churn phenomenon of a bank’s clients. If the aim is to estimate the distribution according to which certain units (bank customers) survive and the factors that cause this are not so important, then parametric models can be used. Estimation of survival function parameters is faster than estimating a full Cox model with a properly selected set of explanatory variables. The authors used censored data from a retail bank for the study. The article also draws attention to the most common problems related to preparing data for survival analysis.
Jednym z kluczowych elementów związanych z wyliczaniem wartości klienta w czasie (Customer Life Time Value) jest oszacowanie długości trwania relacji klienta z bankiem w przyszłości. Można ją oszacować z wykorzystaniem metod analizy przeżycia. Celem artykułu jest sprawdzenie, który ze znanych rozkładów wykorzystywanych w analizie przeżycia (Weibulla, wykładniczy, gamma, logarytmicznie normalny) najlepiej opisuje zjawisko odejść klientów z banku. Jeśli celem jest oszacowanie rozkładu, według którego „przeżywają” określone jednostki (klienci banku), a czynniki, które to powodują, nie są aż tak istotne, to modele parametryczne mogą być wykorzystane. Oszacowanie parametrów funkcji przeżycia jest szybsze niż oszacowanie pełnego modelu Coxa z odpowiednio dobranym zestawem zmiennych objaśniających. Do badania wykorzystano dane cenzurowane banku detalicznego. W artykule zwrócono uwagę na najczęstsze problemy związane z przygotowaniem danych do analizy przeżycia.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2020, 4, 349; 81-92
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies