Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sieć bayesowska" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Imprecise sensitivity analysis of system reliability based on the Bayesian network and probability box
Niedokładna analiza czułościowa niezawodności systemu w oparciu o sieć bayesowską i pole prawdopodobieństwa (p-box)
Autorzy:
Liang, He
Mi, Jinhua
Bai, Libing
Cheng, Yuhua
Powiązania:
https://bibliotekanauki.pl/articles/1841867.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
bayesian network
probability box
sensitivity analysis
reliability analysis
sieć bayesowska
pole prawdopodobieństwa
analiza czułości
analiza niezawodności
Opis:
Sensitivity analysis measures how changes in system inputs affect outputs. Previously, a large amount of sensitivity analysis research was relevant to the precise probability that is regarded as an ideal condition of engineering. Due to insufficient test samples and the low accuracy of test data, system reliability with hybrid uncertainty is difficult to be described as a precise value. As a profusion of highly integrated electromechanical equipment is applied in modern life, it is impossible to apply sufficient resources to eliminate the stochastic property of every component, which necessitates the identification of highly sensitive components to efficiently reduce imprecision. Hence, based on the theory of imprecise probability, imprecise sensitivity analysis has become a popular research topic in the last decade. In this paper, a method for uncertain system reliability and imprecise sensitivity analysis is proposed based on a Bayesian network, a probability box and the pinching method. The feasibility and accuracy of the combined method are fully verified through the evaluation and analysis of a numerical example and a case study of an electromechanical system, and the highly sensitive components that heavily influence the imprecision of system outputs are accurately identified.
Celem analizy czułościowej jest badanie w jakim stopniu zmiany danych wejściowych systemu wpływają na dane wyjściowe. Dotychczasowe badania z wykorzystaniem analizy czułościowej były związane z dokładnym prawdopodobieństwem postrzeganym w inżynierii jako warunek idealny. Przy niewystarczającej wielkości badanej próby i niskiej dokładności danych testowych, niezawodność systemu o hybrydowej niepewności trudno opisać w sposób dokładny. Biorąc pod uwagę fakt, że we współczesnym świecie wykorzystuje się duże ilości wysoce zintegrowanych urządzeń elektromechanicznych, niemożliwa jest alokacja wystarczających zasobów w celu wyeliminowania właściwości stochastycznych każdego elementu. Oznacza to, że aby zredukować niedokładność, konieczna jest identyfikacja komponentów o wysokiej czułości. Dlatego też popularnym przedmiotem badań ostatniej dekady stała się niedokładna analiza czułości, bazująca na teorii niedokładnego prawdopodobieństwa. W artykule zaproponowano metodę analizy niezawodności niepewnego systemu jak również niedokładnej analizy czułościowej w oparciu o sieć bayesowską, pole prawdopodobieństwa i metodę pinch point. Możliwość wykorzystania i dokładność metody zostały w pełni potwierdzone na podstawie przykładu liczbowego jak również studium przypadku systemu elektromechanicznego; proponowana metoda pozwoliła na poprawne określenie wysoce czułych elementów systemu, które w dużym stopniu wpływają na niedokładność danych wyjściowych układu.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 3; 508-519
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel reliability estimation method of multi-state system based on structure learning algorithm
Nowatorska metoda oceny niezawodności systemów wielostanowych w oparciu o algorytm uczenia struktury
Autorzy:
Li, Zhifeng
Wang, Zili
Ren, Yi
Yang, Dezhen
Lv, Xing
Powiązania:
https://bibliotekanauki.pl/articles/301718.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
reliability analysis
Bayesian network
structure learning
multi-state system (MSS)
dependent failure
analiza niezawodności
sieć bayesowska
uczenie struktury
system wielostanowy
uszkodzenie zależne
Opis:
Traditional reliability models, such as fault tree analysis (FTA) and reliability block diagram (RBD), are typically constructed with reference to the function principle graph that is produced by system engineers, which requires substantial time and effort. In addition, the quality and correctness of the models depend on the ability and experience of the engineers and the models are difficult to verify. With the development of data acquisition, data mining and system modeling techniques, the operational data of a complex system considering multi-state, dependent behavior can be obtained and analyzed automatically. In this paper, we present a method that is based on the K2 algorithm for establishing a Bayesian network (BN) for estimating the reliability of a multi-state system with dependent behavior. Facilitated by BN tools, the reliability modeling and the reliability estimation can be conducted automatically. An illustrative example is used to demonstrate the performance of the method.
Tradycyjne modele niezawodności, takie jak analiza drzewa błędów (FTA) czy schemat blokowy niezawodności (RBD), buduje się zazwyczaj w oparciu o tworzone przez inżynierów systemowych schematy zasad działania systemu, których przygotowanie wymaga dużych nakładów czasu i pracy. Jakość i poprawność tych modeli zależy od umiejętności i doświadczenia inżynierów, a same modele są trudne do zweryfikowania. Dzięki rozwojowi technik akwizycji i eksploracji danych oraz modelowania systemów, dane operacyjne złożonego systemu uwzględniające jego zależne, wielostanowe zachowania mogą być pozyskiwane i analizowane automatycznie. W artykule przedstawiono metodę konstrukcji sieci bayesowskiej (BN) opartą na algorytmie K2, która pozwala na ocenę niezawodności systemu wielostanowego o zachowaniach zależnych. Dzięki narzędziom BN, modelowanie i szacowanie niezawodności może odbywać się automatycznie. Działanie omawianej metody zilustrowano na podstawie przykładu.
Źródło:
Eksploatacja i Niezawodność; 2020, 22, 1; 170-178
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reliability analysis for multi-state system based on triangular fuzzy variety subset bayesian networks
Analiza niezawodności systemu wielostanowego z zastosowaniem sieci bayesowskich opartych na rozmytych podzbiorach zmienności opisanych przez trójkątną funkcję przynależności
Autorzy:
He, Q.
Zha, Y.
Zhang, R.
Sun, Q.
Liu, T.
Powiązania:
https://bibliotekanauki.pl/articles/302183.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
teoria zbiorów rozmytych
system wielostanowy
sieć bayesowska
wypadek podczas ruchu wózka windy
analiza niezawodności
reliability analysis
fuzzy set theory
Multi-State System
Bayesian network
elevator free movement accident
Opis:
W niniejszej pracy zaproponowano nową metodę analizy niezawodności systemów wielostanowych wykorzystującą sieci Bayesa (BN) oparte na rozmytych podzbiorach zmienności opisanych za pomocą trójkątnej funkcji przynależności. Metoda ta uwzględnia rozmyty charakter danych dotyczących uszkodzeń, wielostanowość systemu oraz zmienność prawdopodobieństwa wystąpienia uszkodzenia w czasie. BN, które znalazły zastosowanie w modelowaniu i metodach obliczeniowych, wykorzystuje się także do analizy niezawodności. W przedstawionych badaniach, analizę BN uzupełniono o elementy teorii zbiorów rozmytych wykorzystując do opisu prawdopodobieństwa wystąpienia uszkodzenia, podzbiory zmienności opisane przez trójkątną funkcję przynależności. Niepewność zależności logicznej pomiędzy awariami reprezentowanymi przez różne węzły sieci opisano za pomocą tabel rozmytego prawdopodobieństwa warunkowego. W pierwszej kolejności analizowano prawdopodobieństwo uszkodzenia każdego korzenia (węzła głównego) w funkcji czasu. Następnie, wyznaczono trójkątny rozmyty podzbiór zmienności, za pomocą którego opisano rozmyte prawdopodobieństwo uszkodzenia węzłów głównych. Podzbiór ten wykorzystano do analizy niezawodności systemu wielostanowego przy pomocy rozmytych BN. Artykuł kończy opis wypadku podczas ruchu wózka windy szybkobieżnej, który potwierdza skuteczność i możliwość praktycznego wykorzystania proponowanej metody. Wyniki pokazują, że proponowane podejście może skutecznie rozwiązywać na wczesnym etapie problemy związane z niepewnością informacji oraz wielostanowością systemu.
In this paper, a novel reliability analysis method for multi-state system is proposed on the basis of triangular fuzzy variety subset Bayesian network (BN). The method considers fuzziness, multi-state, and variety of failure probability over time. With advantages in modeling and computation, the BN is utilized for reliability analysis. Fuzzy set theory is introduced into the BN analysis by using triangular fuzzy variety subset to describe failure probability. The uncertainty of fault logical relationship between different nodes is described through fuzzy conditional probability tables. As a function of time, the failure probability of each root node is analyzed first. Subsequently, the triangle fuzzy variety subset is established to describe the fuzzy failure probability of root nodes. This subset is applied to analyze the reliability of multi-state system fuzzy BN. Finally, a case study on the car free movement accident of flexible high-speed elevator lift system is used to demonstrate the effectiveness and practicality of the proposed method. Results show that the proposed approach could effectively address the problems on information uncertainty and multi-state in the early stage.
Źródło:
Eksploatacja i Niezawodność; 2017, 19, 2; 158-165
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reliability analysis of complex uncertainty multi-state system based on Bayesian network
Zastosowanie sieci bayesowskiej do analizy niezawodności złożonych systemów wielostanowych w warunkach niepewności
Autorzy:
Wang, Haipeng
Duan, Fuhai
Ma, Jun
Powiązania:
https://bibliotekanauki.pl/articles/300676.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
reliability analysis
Bayesian network
complex uncertainty multi-state system
fuzzy mathematics
grey system theory
analiza niezawodności
sieć bayesowska
złożony system wielostanowy
niepewność
matematyka rozmyta
teoria szarych systemów
Opis:
Reliability analysis of complex multi-state system has uncertainty, which is caused by complex structures, limited test samples, and insufficient reliability data. By introducing fuzzy mathematics and grey system theory into the Bayesian network, the model of the grey fuzzy Bayesian network is built, and the reliability analysis method of complex uncertainty multi-state system with the non-deterministic membership function and the interval characteristic quantity is proposed in this paper. Using the trapezoidal membership function with fuzzy support radius variable to describe the fault state of the component, it can effectively avoid the influence of human subjective factors on the selection of the membership function and solve the problem that the fault states of the system and its components are difficult to define accurately. And the conditional probability table containing interval grey numbers is constructed to effectively express the uncertain fault logic relationship between the system and its components. Moreover, a parameter planning model of the system reliability characteristic quantities is constructed, and the system reliability characteristic quantities are expressed as the form of interval values. Finally, two sets of numerical experiments are conducted and discussed, and the results show that the proposed method is an effective and a promising approach to reliability analysis for complex uncertainty multi-state systems.
Analiza niezawodności złożonych systemów wielostanowych obarczona jest niepewnością związaną ze złożonością ich struktury, ograniczoną liczbą próbek badawczych i niewystarczającymi danymi dotyczącymi niezawodności. W przedstawionej pracy, wprowadzenie elementów matematyki rozmytej i teorii szarych systemów do sieci bayesowskiej umożliwiło budowę modelu szarej rozmytej sieci bayesowskiej i zaproponowanie metody analizy niezawodności złożonych systemów wielostanowych w warunkach niepewności, która wykorzystuje niedeterministyczną funkcję przynależności oraz pojęcie interwałowej wielkości charakterystycznej. Zastosowanie trapezoidalnej funkcji przynależności z rozmytą zmienną promienia nośnego do opisu stanu uszkodzenia komponentu, pozwala zniwelować wpływ subiektywnego czynnika ludzkiego na wybór funkcji przynależności i eliminuje konieczność precyzyjnego definiowania stanu uszkodzenia systemu i jego elementów składowych. Opracowana tabela prawdopodobieństw warunkowych zawierająca szare liczby interwałowe pozwala wyrazić niepewne zależności logiki uszkodzeń między systemem a jego składnikami. Ponadto, w pracy skonstruowano model planowania parametrów charakterystycznych wielkości niezawodności systemu wyrażonych w postaci wartości interwałowych. W ostatniej części artykułu omówiono dwie serie eksperymentów numerycznych, których wyniki pokazują, że proponowana metoda stanowi skuteczne i obiecujące podejście do analizy niezawodności złożonych systemów wielostanowych w warunkach niepewności.
Źródło:
Eksploatacja i Niezawodność; 2019, 21, 3; 419-429
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies