Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dzierżak, Róża" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
The influence of the principal component analysis of texture features on the classification quality of sponge tissue images
Wpływ analizy głównych składowych cech tekstury na jakość klasyfikacji obrazów tkanki gąbczastej
Autorzy:
Dzierżak, Róża
Powiązania:
https://bibliotekanauki.pl/articles/1841333.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
principal component analysis
classification
texture analysis
medical imaging
analiza głównych składowych
klasyfikacja
analiza tekstury
obrazowanie medyczne
Opis:
The aim of this article was to determine the effect of principal component analysis on the results of classification of spongy tissue images. Four hundred computed tomography images of the spine (L1 vertebra) were used for the analyses. The images were from fifty healthy patients and fifty patients diagnosed with osteoporosis. The obtained tissue image samples with a size of 50x50 pixels were subjected to texture analysis. As a result, feature descriptors based on a grey level histogram, gradient matrix, RL matrix, event matrix, autoregressive model and wavelet transform were obtained. The results obtained were ranked in importance from the most important to the least important. The first fifty features from the ranking were used for further experiments. The data were subjected to the principal component analysis, which resulted in a set of six new features. Subsequently, both sets (50 and 6 traits) were classified using five different methods: naive Bayesian classifier, multilayer perceptrons, Hoeffding Tree, 1-Nearest Neighbour and Random Forest. The best results were obtained for data on which principal components analysis was performed and classified using 1-Nearest Neighbour. Such an algorithm of procedure allowed to obtain a high value of TPR and PPV parameters, equal to 97.5%. In the case of other classifiers, the use of principal component analysis worsened the results by an average of 2%.
Celem niniejszego artykułu było określenie wpływu analizy głównych składowych na wyniki klasyfikacji obrazów tkanki gąbczastej. Do analiz wykorzystano czterysta obrazów tomografii komputerowej kręgosłupa (kręg L1). Obrazy pochodziły od pięćdziesięciu zdrowych pacjentów oraz pięćdziesięciu pacjentów ze zdiagnozowaną osteoporozą. Uzyskane próbki obrazowe tkanki o wymiarze 50x50 pikseli poddano analizie tekstury. W wyniku tego otrzymano deskryptory cech oparte na histogramie poziomów szarości, macierzy gradientu, macierzy RL, macierzy zdarzeń, modelu autoregresji i transformacie falkowej. Otrzymane wyniki ustawiono w rankingu ważności od najistotniejszej do najmniej ważnej. Pięćdziesiąt pierwszych cech z rankingu wykorzystano do dalszych eksperymentów. Dane zostały poddane analizie głównych składowych wskutek czego uzyskano zbiór sześciu nowych cech. Następnie oba zbiory (50 i 6 cech) zostały poddane klasyfikacji przy użyciu pięciu różnych metod: naiwnego klasyfikatora Bayesa, wielowarstwowych perceptronów, Hoeffding Tree, 1-Nearest Neighbour and Random Forest. Najlepsze wyniki uzyskano dla danych, na których przeprowadzono analizę głównych składowych i poddano klasyfikacji za pomocą 1-Nearest Neighbour. Taki algorytm postępowania pozwolił na uzyskanie wysokiej wartości parametrów TPR oraz PPV, równych 97,5%. W przypadku pozostałych klasyfikatorów zastosowanie analizy głównych składowych pogorszyło wyniki średnio o 2%.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2020, 10, 3; 13-16
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies