Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "intelligent algorithm" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
The use of artificial intelligence in automated in-house logistics centres
Zastosowanie sztucznej inteligencji w zautomatyzowanych centrach logistycznych
Autorzy:
Rymarczyk, T.
Kłosowski, G.
Powiązania:
https://bibliotekanauki.pl/articles/407666.pdf
Data publikacji:
2018
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
logistics
fuzzy logic
intelligent transportation system
genetic algorithm
logistyka
logika rozmyta
inteligentny system transportowy
algorytm genetyczny
Opis:
The paper deals with the problem of works transport organization in logistic center with the use of artificial intelligence algorithms. The presented approach is based on non-changeable path during travel along a given loop. The ordered set of containers requesting transport service was determined by fuzzy logic, while the sequence of containers in a loop was optimized by genetic algorithms. A solution for semi-autonomous transport vehicles wherein the control system informs the driver about optimal route was presented. The obtained solution was verified by a computer simulation.
Artykuł dotyczy problematyki sterowania transportem wewnątrzzakładowym w zautomatyzowanych centrach logistycznych z zastosowaniem metod sztucznej inteligencji. Zaprezentowane podejście zakłada predykcję niezmiennej trasy przejazdu środka transportu. Kolejność zbioru regałów wymagających obsługi transportowej jest determinowana przez logikę rozmytą, natomiast do optymalizacja trasy przejazdu wykorzystano algorytmy genetyczne. Zaprezentowano koncepcję środka transportu, w którym system sterowania informuje kierowcę dokąd ma jechać. Uzyskane rozwiązanie zostało zweryfikowane z wykorzystaniem metod symulacji komputerowej.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2018, 8, 1; 48-51
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tabu Search and genetic algorithm for production process scheduling problem
Tabu Search i algorytmy genetyczne w harmonogramowaniu procesów produkcyjnych
Autorzy:
Burduk, Anna
Musiał, Kamil
Kochańska, Joanna
Górnicka, Dagmara
Stetsenko, Anastasia
Powiązania:
https://bibliotekanauki.pl/articles/361796.pdf
Data publikacji:
2019
Wydawca:
Wyższa Szkoła Logistyki
Tematy:
production process scheduling
Tabu Search
genetic algorithm
heuristic methods
intelligent methods
manufacturing
harmonogramowanie procesów produkcyjnych
algorytm genetyczny
metody heurystyczne
metody inteligentne
wytwarzanie
Opis:
Background: The paper deals with production process scheduling problem. In large companies, the decision-making process about operators' work, machines availability and production flow is a very difficult task, which is often being done by employees. Thus, not always the decision made is optimal in terms of cost, production time, etc. Methods: As a solution, two intelligent methods: Tabu Search and the genetic algorithm have been analyzed in field of production scheduling. The aim of this work was to examine the possibility of improving presented decision-making process that is being performed when scheduling, using Tabu Search and genetic algorithms. As a result of experimental research, it has been confirmed that the use of appropriately selected and parameterized intelligent methods allows for the optimization of the analyzed production process due to its duration. The research was case of study performed in cooperation with company that produces components for automotive industry. Results: Basing on collected and analyzed data, considered methods can be more or less successfully used in production process scheduling. Comparing both used algorithms, Tabu Search twice proposed worse solutions, the average operational time was 1.63% shorter than the actual one. In this case, better results were reached by using genetic algorithm - potential operational time was always shorter than the actual one, and it was reduced by 6.3% in total on average. Conclusion: Using algorithms allowed to achieve lower workload of employees and to reduce of operational time, which were the evaluation criteria in performed research. Managers of the analyzed company were pleased with the proposed solution and declared interest in developing these methods for future. This shows that intelligent methods can find, in relatively short time, the solution that is close to the optimal and acceptable from the problem point of view.
Wstęp: Artykuł opisuje problem harmonogramowania procesów produkcyjnych. W dużych przedsiębiorstwach proces podejmowania decyzji dotyczących pracy operatorów, maszyn, dostępności zasobów i przepływu produkcji jest bardzo złożonym zadaniem, często wykonywanym przez pracowników. W związku z tym podjęte decyzje nie zawsze są optymalne w kontekście kosztów, czasu produkcji itp. Metody: Jako rozwiązanie, przeanalizowane zostało użycie, w obszarze harmonogramowania produkcji, dwóch metod inteligentnych: Tabu Search i algorytmów genetycznych. Celem pracy było zbadanie możliwości doskonalenia procesu podejmowania decyzji, który jest wykonywany przy harmonogramowaniu produkcji, przy pomocy Tabu Search i algorytmów genetycznych. Jako wynik eksperymentu przeprowadzonego podczas badań, potwierdzono, że użycie odpowiednio wybranych oraz sparametryzowanych metod inteligentnych pozwala na optymalizację analizowanego procesu produkcji. Badania zostały wykonane we współpracy z przedsiębiorstwem zajmującym się produkcją komponentów dla branży motoryzacyjnej, jako studium przypadku. Wyniki: Zgodnie z zebranymi i przeanalizowanymi danymi, wybrane metody mogą być z mniejszym bądź większym powodzeniem stosowane w procesie harmonogramowania produkcji. Porównując zastosowane algorytmy, Tabu Search dwukrotnie zaproponował rozwiązanie gorsze od aktualnego podejścia przedsiębiorstwa, jednak czas produkcji został skrócony średnio o 1.63%. W tym przypadku, lepsze wyniki pozwoliło osiągnąć zastosowanie algorytmu genetycznego - potencjalny czas produkcji był zawsze krótszy od aktualnie stosowanego rozwiązania, a średni czas produkcji został zredukowany o 6.3%. Wnioski: Zastosowanie algorytmów pozwoliło na osiągnięcie niższego obciążenia pracą operatorów oraz zredukowanie czasu operacyjnego, co stanowiło kryteria oceny w przeprowadzonych badaniach. Kierownictwo analizowanego przedsiębiorstwa było zadowolone z zaproponowanych rozwiązań. Zdecydowali się na stosowanie omawianych metod w codziennym harmonogramowaniu produkcji oraz zadeklarowali zainteresowanie rozwojem stosowania metod w przyszłości. Metody inteligentne pozwalają znaleźć, w relatywnie krótkim czasie, rozwiązanie bliskie optymalnemu i akceptowalne z punktu widzenia analizowanego problemu.
Źródło:
LogForum; 2019, 15, 2; 181-189
1734-459X
Pojawia się w:
LogForum
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie algorytmów genetycznych do doboru wejść klasyfikatora uszkodzeń zębów kół przekładni opartego na sieci neuronowej PNN oraz krótkoczasowej transformacie Fouriera
The use of genetic algorithms in the task of choosing inputs for PNN neural network classifier of faults of gear-tooth which used inputs from STFT analysis
Autorzy:
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/258316.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
Tematy:
diagnostyka
przekładnia zębata
sztuczna inteligencja
sztuczna sieć neuronowa
algorytm genetyczny
krótkoczasowa transformata Fouriera
diagnostic
toothed gear
artificial intelligent method
PNN
genetic algorithm
short-time Fourier transform
Opis:
W artykule przedstawiono wyniki prób mających na celu budowę klasyfikatora lokalnych uszkodzeń zębów kół przekładni, opartego na sztucznych sieciach neuronowych. W badaniach wykorzystywano probabilistyczne sieci neuronowe (PNN). Dodatkowo podjęto próbę wykorzystania algorytmów genetycznych do celów wyboru wejść klasyfikatora neuronowego. Badania oparto na sygnałach drganiowych otrzymanych z modelu dynamicznego przekładni pracującej w układzie napędowym. W artykule zaproponowano sposób budowy deskryptorów lokalnych uszkodzeń zębów kół wykorzystując do tego celu sygnały drganiowe poddane odpowiedniej filtracji oraz przetwarzaniu z użyciem krótkoczasowej transformaty Fouriera (STFT).
The present paper presents the results of an experimental application of probabilistic neural network as a classifier of the degree of cracking root of the tooth in a gear wheel. The input data for the classifier was in a form of matrix composed of statistical measures, obtained from short time Fourier transform. The model of gearbox was used in order to create a base of knowledge. In the experiment genetic algorithms was used to check influence of choosing inputs for neural classifier on diagnostic error.
Źródło:
Problemy Eksploatacji; 2007, 3; 51-70
1232-9312
Pojawia się w:
Problemy Eksploatacji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Genetic algorithm application for optimizing traffic signal timing reflecting vehicle emission intensity
Autorzy:
Hai, Dinh Tuan
Manh, Do Van
Nhat, Nguyen Minh
Powiązania:
https://bibliotekanauki.pl/articles/2098075.pdf
Data publikacji:
2021
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
traffic signal optimization
heuristic solution
genetic algorithm
vehicle exhaust emission
intelligent transport system
optymalizacja sygnalizacji drogowej
rozwiązanie heurystyczne
algorytm genetyczny
emisja spalin pojazdu
inteligentny system transportowy
Opis:
Urbanization has created continuous growth in transportation demand, leading to serious issues, including infrastructure overload, disrupted traffic flow, and associated vehicular emissions. As a result, resolving these problems has become one of the primary missions of governments worldwide. The optimization of the traffic signal timing system is considered a promising approach to overcoming the negative consequences of increasing vehicle volume. In metropolises, oversaturated intersections, where the traffic density and vehicle exhaust emission levels are significant, have been considered as the priority to target. Several scientists have attempted to design traffic lights with the most appropriate timing. However, the majority of previous studies have not formed a comprehensive evaluation of essential factors, especially regarding the appropriate weighting of vehicle emission parameters. By assessing the all-inclusive relationship of critical elements with an emphasis on vehicle exhaust emissions, a performance index model using a genetic algorithm (GA) is established in this paper, demonstrated by data from a case study in Taiwan.
Źródło:
Transport Problems; 2021, 16, 1; 5--16
1896-0596
2300-861X
Pojawia się w:
Transport Problems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solving scheduling problems with integrated online sustainability observation using heuristic optimization
Autorzy:
Burduk, Anna
Musiał, Kamil
Balashov, Artem
Batako, Andre
Safonyk, Andrii
Powiązania:
https://bibliotekanauki.pl/articles/2173719.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
production scheduling
sustainable development
genetic algorithm
meta-heuristics
intelligent optimization methods of production systems
tabu search
harmonogramowanie produkcji
zrównoważony rozwój
algorytm genetyczny
przeszukiwanie tabu
metaheurystyki
inteligentne metody optymalizacji systemów produkcyjnych
Opis:
The paper deals with the issue of production scheduling for various types of employees in a large manufacturing company where the decision-making process was based on a human factor and the foreman’s know-how, which was error-prone. Modern production processes are getting more and more complex. A company that wants to be competitive on the market must consider many factors. Relying only on human factors is not efficient at all. The presented work has the objective of developing a new employee scheduling system that might be considered a particular case of the job shop problem from the set of the employee scheduling problems. The Neuro-Tabu Search algorithm and the data gathered by manufacturing sensors and process controls are used to remotely inspect machine condition and sustainability as well as for preventive maintenance. They were used to build production schedules. The construction of the Neuro-Tabu Search algorithm combines the Tabu Search algorithm, one of the most effective methods of constructing heuristic algorithms for scheduling problems, and a self-organizing neural network that further improves the prohibition mechanism of the Tabu Search algorithm. Additionally, in the paper, sustainability with the use of Industry 4.0 is considered. That would make it possible to minimize the costs of employees’ work and the cost of the overall production process. Solving the optimization problem offered by Neuro-Tabu Search algorithm and real-time data shows a new way of production management.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 6; art. no. e143830
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies