Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "approximation prediction" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Prediction of monthly averages of air pollutant concentrations for selected areas in Mazovian Voivodeship
Predykcja średniomiesięcznych stężeń zanieczyszczeń powietrza dla wybranych obszarów województwa mazowieckiego
Autorzy:
Hoffman, S.
Filak, M.
Powiązania:
https://bibliotekanauki.pl/articles/297072.pdf
Data publikacji:
2018
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
air pollution
air monitoring
pollutant concentrations
monthly concentrations
multivariate regression models
approximation error
zanieczyszczenia powietrza
monitoring powietrza
stężenia zanieczyszczeń
stężenia średniomiesięczne
modele regresji wielowymiarowej
błąd aproksymacji
Opis:
The study was carried out using long-term data, recorded at two air monitoring stations in Masovian Voivodeship. Hourly time series, obtained from the monitoring system, were averaged in calendar months to get monthly time series. The data sets, containing time series of monthly mean values from two different monitoring sites, were subjected to multivariate regression analysis. Models of multidimensional linear regression were built for the both sets of data. The obtained models describe statistical dependencies between concentrations of specified air pollutants and concentrations of other pollutants and meteorological parameters, recorded at the same monitoring station. The achieved regression equations were used to predict long-term courses of monthly concentrations. For visualization of prediction accuracy, the charts containing time series of actual and predicted monthly concentrations were prepared. The approximation precision was estimated by calculating modelling errors for each regression model. Three different measures of approximation error were applied: mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient (r).
Badania przeprowadzono, wykorzystując wieloletnie dane pomiarowe zarejestrowane na dwóch stacjach monitoringu powietrza w województwie mazowieckim. 1-godzinne serie czasowe uśredniono w okresach miesięcznych, uzyskując średniomiesięczne serie czasowe. Zbiory danych zawierających serie czasowe wartości średniomiesięcznych poddano analizie regresji wielowymiarowej. W obu zbiorach szukano modeli wielowymiarowej regresji liniowej, opisujących statystyczną zależność stężeń poszczególnych zanieczyszczeń powietrza od stężeń pozostałych zanieczyszczeń i od parametrów meteorologicznych. Otrzymane równania regresji wykorzystano do predykcji średniomiesięcznych stężeń zanieczyszczeń powietrza. Sporządzono wykresy zawierające serie czasowe rzeczywistych i przewidywanych stężeń średniomiesięcznych, które pozwoliły na wizualizację dokładności predykcji. Oszacowano również dokładność aproksymacji, obliczając błędy modelowania dla każdego z modeli regresyjnych. Zastosowano trzy różne miary błędu aproksymacji, obliczając dla modeli regresyjnych średni błąd bezwzględny (MAE), pierwiastek z błędu średniokwadratowego (RMSE), współczynnik korelacji Pearsona (r).
Źródło:
Inżynieria i Ochrona Środowiska; 2018, 21, 4; 321-333
1505-3695
2391-7253
Pojawia się w:
Inżynieria i Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie dokładności różnych metod predykcji stężeń zanieczyszczeń powietrza
A comparison of accuracies of different air pollutants concentration prediction methods
Autorzy:
Hoffman, S.
Jasiński, R.
Powiązania:
https://bibliotekanauki.pl/articles/297662.pdf
Data publikacji:
2009
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
zanieczyszczenia powietrza
monitoring powietrza
stężenia chwilowe
dane monitoringu
brakujące dane
luki pomiarowe
aproksymacja
modele szeregów czasowych
modele regresyjne
sieci neuronowe
air monitoring
hourly concentrations
monitoring data
air pollution
missing data
measure gaps
approximation
time series models
regression models
neural networks
Opis:
W analizie wykorzystano dane zarejestrowane w latach 2004-2008 na ośmiu stacjach monitoringu powietrza działających w różnych miejscowościach województw łódzkiego i mazowieckiego. W pracy badano możliwości aproksymacji stężeń zanieczyszczeń mierzonych na stacjach monitoringu powietrza. Ocenę jakości modelowania wykonano poprzez porównanie modelowanych stężeń ze stężeniami rzeczywistymi. Do predykcji stężeń wykorzystano sieci neuronowe. Porównywano dokładność pięciu różnych grup modeli: modeli szeregów czasowych, liniowych modeli regresji wielowymiarowej, nieliniowych modeli regresji wielowymiarowej, liniowych modeli regresji wielowymiarowej eksplorujących dane pochodzące z sąsiednich stacji monitoringu i nieliniowych modeli regresji wielowymiarowej eksplorujących dane pochodzące z sąsiednich stacji monitoringu. Celem praktycznym była rekomendacja optymalnych technik modelowania luki pomiarowej obejmującej pewien dłuższy fragment serii czasowej tylko jednego z zanieczyszczeń powietrza przy założeniu, że są dostępne wszystkie pozostałe dane, w tym dane pochodzące z sąsiednich stacji monitoringu powietrza. Wykonana analiza wykazała, że dla każdego z zanieczyszczeń powietrza należy rekomendować inne metody predykcji, ponieważ występują duże różnice w możliwościach modelowania poszczególnych zanieczyszczeń powietrza. Stężenia takich zanieczyszczeń, jak O3, SO2, PM10 można efektywnie modelować metodą szeregów czasowych, ale tylko do pewnego horyzontu prognozy, po którym regresyjne metody modelowania okazują się dokładniejsze. W modelowaniu stężeń O3 i PM10 efektywne może się okazać wykorzystanie stężeń tych zanieczyszczeń zarejestrowanych na innych stacjach monitoringu powietrza. W przypadku pozostałych zanieczyszczeń NO, NO2 i CO zasadne jest stosowanie tylko jednej metody modelowania - analizy regresji. Liniowe modele regresyjne są mniej dokładne od ich nieliniowych odpowiedników. Różnice dokładności obu typów modeli nie zawsze są duże. Dlatego modele liniowe mogą stanowić praktyczną alternatywę dla nieliniowych odpowiedników.
Air monitoring data collected over a 5-year period at 8 different measure sites in Central Poland were used as the database for analysis purposes. Approximation of concentrations of monitored air pollutants were done by means of several prediction methods: time series analysis, regression analysis with predictors from a single monitoring station, and regression analysis with external predictors. Separate models were created for O3, NO2, NO, PM10, SO2, CO. Modelled and measured concentrations were compared. As a result prediction errors were calculated for each model. The main objective of analysis was a comparison of prediction results, and recommendation the most accurate modelling methods, dedicated to specified pollutants. The examination was made by means of artificial neural networks, which were employed to create all types of models.
Źródło:
Inżynieria i Ochrona Środowiska; 2009, 12, 4; 307-325
1505-3695
2391-7253
Pojawia się w:
Inżynieria i Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies