Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "reaction rate" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Analiza szybkości reakcji utleniania 955-elementowej próby węgli kamiennych z uwzględnieniem zagrożenia pożarowego
Analysis of the reaction rate of 955 samples of coals with reference to a spontaneous fire hazard
Autorzy:
Słowik, S.
Powiązania:
https://bibliotekanauki.pl/articles/166287.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Inżynierów i Techników Górnictwa
Tematy:
węgiel
szybkość reakcji
równanie Arrheniusa
energia aktywacji
współczynnik przedekspotencjalny
coal
reaction rate
Arrhenious equation
activation energy
pre-exponential coefficient
Opis:
W artykule przedstawiono analizę przebiegu szybkości reakcji utleniania dla próby węgla złożonej z 955 elementów (węgli kamiennych pobranych z polskich kopalń), którą odniesiono do pożarów endogenicznych zaistniałych w podziemnych kopalniach węgla kamiennego. Wykazano, że szybkość reakcji utleniania węgli o małych wartościach współczynnika ko i energii aktywacji E wraz ze wzrostem temperatury zrównuje się z szybkością reakcji utleniania węgli, które mają duże wartości współczynnika ko i energii aktywacji E. Zjawisko to zaobserwowano w wąskim przedziale temperatury, który wynosi od 261°C do 333°C, średnio 297°C. Temperaturę tę nazwano temperaturą wyrównania szybkości reakcji dla węgli, zaś wyznaczony przedział, przedziałem temperatury wyrównania. Zaobserwowane zachowanie dowodzi, że węgle o wysokiej wartości energii aktywacji stwarzają niewielkie zagrożenie pożarowe w niskiej temperaturze (poniżej temperatury krytycznej), które wraz ze wzrostem temperatury szybko się zwiększa i jest trudne do opanowania. Natomiast węgle o niskich wartościach energii aktywacji zachowują się odwrotnie, w początkowym stadium zagrożenia pożarowego stwarzają większe problemy, zaś powstałe z nich pożary mają łagodniejszy przebieg. Analiza pożarów endogenicznych zaistniałych w kopalniach wykazała, że najwyższą możliwość wystąpienia pożarów endogenicznych obserwujemy w przedziale energii aktywacji 60 000-65 000 J/mol.
This paper presents an analysis of the oxidation reaction rates for a collection of coal samples consisting of 955 elements (coals) with reference to the endogenous fires occurring in underground coal mines. It has been shown that the rate of oxidation of coals with a low ko coefficient and activation energy E with the increase of temperature equals the rate of oxidation of coals of large values of ko coefficient and the activation energy E. This phenomenon has been observed in a narrow temperature range, which is from 261°C to 333°C, with the average of 297°C. This temperature has been called the compensation temperature of reaction rate for coals while the designated range is referred to as the range of temperature alignment. The observed behavior proves that coals with high activation energy value generate low fire hazard at low temperature (below the critical temperature), however, the fire hazard increases rapidly and is difficult to control with the increase of the temperature. Meanwhile, the coals with low values of activation energy behave inversely, generating greater problems in the initial stages of the fire hazard, but the fires that they cause are milder. The analysis of endogenous fires that occurred in the coal mines has shown that the highest possibility of endogenous fires was observed between the activation energy of 60 000-65 000 J/mol.
Źródło:
Przegląd Górniczy; 2016, 72, 2; 23-33
0033-216X
Pojawia się w:
Przegląd Górniczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Energia aktywacji utworów warstw menilitowych i jej implikacje dla procesu generowania węglowodorów w Karpatach
Activation energy of rocks of Menilite Beds and its implications for the hydrocarbon generation in the Carpathians
Autorzy:
Spunda, Karol
Słoczyński, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2143236.pdf
Data publikacji:
2022
Wydawca:
Instytut Nafty i Gazu - Państwowy Instytut Badawczy
Tematy:
energia aktywacji
stała Arrheniusa
stała szybkości reakcji
Rock-Eval
warstwy menilitowe
activation energy
pre-exponential factor
reaction rate constant
Menilite Beds
Opis:
W artykule zaprezentowano procedurę obliczeń energii aktywacji kerogenu utworów warstw menilitowych oraz implikacje wynikające z jej zróżnicowania dla przebiegu procesu generowania węglowodorów w karpackim systemie naftowym. Powstawanie węglowodorów w skałach następuje w wyniku rozpadu złożonych związków organicznych (głównie związków węgla, wodoru i tlenu) budujących kerogen na cięższe i lżejsze węglowodory frakcji olejowej i gazowej. Proces jest reakcją termokatalityczną, której dynamika determinowana jest między innymi przez energię aktywacji kerogenu. Energia aktywacji jest jednym z podstawowych parametrów wejściowych implementowanych do numerycznych modeli systemów naftowych, dlatego jej oznaczenie jest bardzo istotne dla rzetelnego odtworzenia tego procesu, zachodzącego w naturalnych warunkach geologicznych i w skali czasu geologicznego. Obliczeń energii aktywacji dokonano na podstawie wyników oznaczeń parametrów kinetycznych reakcji krakingu kerogenu, który to kraking przeprowadzono w kontrolowanych warunkach laboratoryjnych przy użyciu analizatora pirolitycznego Rock-Eval. Eksperyment polegał na nieizotermicznej pirolizie skał zawierających kerogen i rejestrowaniu szybkości reakcji (tempa generowania węglowodorów) w całym zakresie temperaturowym pirolizy. Energię aktywacji (Ea) i stałą Arrheniusa (A) obliczano z równania Arrheniusa, opisującego zależność stałych szybkości reakcji od temperatury. Do obliczeń wykorzystano model dyskretnej dystrybucji energii aktywacji (Ea) ze stałą wartością stałej Arrheniusa (A). Rozkład optymalizowano iteracyjnie metodą regresji liniowej i nieliniowej. Dla każdego z reagentów, o początkowej masie x0i, obliczono dyskretną wartość energii aktywacji (Eai). W tym przypadku i-ta reakcja równoległa odpowiadała wiązaniom chemicznym, które muszą zostać rozbite energią aktywacji (Eai) w cząsteczkach kerogenu. Optymalizacji rozkładu energii aktywacji dokonano przy użyciu oprogramowania Kinetics2015.
The article presents the procedure for calculating the kerogen activation energy of rock of the Menilite Beds which are considered the main source rock of the Carpathian petroleum system. The formation of hydrocarbons in rocks occurs as a result of breakdown of complex organic compounds (mainly carbon, hydrogen and oxygen compounds) which build kerogen into heavier and lighter oil and gas hydrocarbons. This process is a thermocatalytic reaction, the dynamics of which is determined, inter alia, by the kerogen activation energy. The activation energy is one of the basic input parameters implemented into numerical models of petroleum systems. For this reason, the determination of the activation energy is very important for a reliable reconstruction of the hydrocarbon generation process in natural geological conditions and on the geological time scale. Activation energy calculations were made on the basis of the results of measurements of kinetic parameters of the kerogen cracking reaction, which (kerogen cracking) was carried out under controlled laboratory conditions using a Rock-Eval pyrolyser. The experiment consisted in non-isothermal pyrolysis of rocks containing kerogen and recording the rate of reaction (rate of hydrocarbon generation) over the entire temperature range of pyrolysis. The activation energy (Ea) and pre-exponential factor (A) were calculated using the Arrhenius equation describing the dependence of the reaction rate constants on the temperature. Discrete distribution of activation energies (Ea) model with a constant value of the pre-exponential factor (A) was used for the calculations. The energy distribution was optimized by iterative linear and non-linear regression. The discrete activation energy (Eai) was calculated for each reactant with an initial mass x0i. In this case, the “i-th” parallel reaction corresponds to chemical bonds that must be broken with an energy equal to Eai in the kerogen molecules. The activation energy distribution was optimized using the Kinetics2015 software.
Źródło:
Nafta-Gaz; 2022, 78, 5; 327-335
0867-8871
Pojawia się w:
Nafta-Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Opredelenie temperatury samonagrevaniâ uglâ po sootnošeniû oksida ugleroda i ubyli kisloroda na avarijnom učastke
Identification of Temperature for Self Heating of Coal Caused by the Ratio of Carbon Oxide and Decreasing Oxygen Levels Along a Section Exposed to a Catastrophe
Określenie temperatury samonagrzewania się węgla w zależności od zawartości tlenku węgla i ubytku tlenu na odcinku awaryjnym
Autorzy:
Grekov, S. P.
Pashkovskiy, P. S.
Orlikova, V. P.
Powiązania:
https://bibliotekanauki.pl/articles/373904.pdf
Data publikacji:
2015
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
heterogeneous process
surface reaction segment
low temperature oxidation
reaction rate
activation energy
spontaneous combustion
proces heretogeniczny
udział/część powierzchni reakcyjnej
niskotemperaturowe utlenianie
szybkość reakcji
energia aktywacji
samonagrzewanie się
Opis:
Aim: The purpose of this study is to determine the temperature for self heating of coal, caused by the ratio of carbon monoxide and decreasing oxygen levels along a mining section exposed to a catastrophe. Introduction: The need for this study is associated with existing cumbersome methods used to determine the temperature of coal containing unsaturated hydrocarbons and necessity to identify a faster method for obtaining data about spontaneous fires, to facilitate the selection of appropriate firefighting measures. Methods: Methods are based on the theoretical model for non-isothermic kinetics of heterogeneous oxidation of coal with a variable reactionary oxygen surface, caused by the release of methane, as well as by formation and decay of surface compounds through oxygen adsorption and formation of stable particles. Results: A self heating model was put forward for a layer of coal, based on a representation involving a porous substance. It was assumed that a stream of filtered air, containing oxygen, oxidised upon entering such a layer and generated a heat source. Heat was absorbed across the coal surface culminating in an increase to its temperature. An analytical solution was obtained for this exercise. To describe the intensity of generated heat, the authors utilised their own, previously developed mathematical model. The model took into account the change in oxygen content and surface reaction, depending on coal oxidation levels. Some 30 experiments were performed and analysed, which addressed the issue of coal surface reaction and identified the relationship between the surface layer and degree of coal metamorphosis. This relationship was utilised to determine the proportion of oxygen absorbed during oxidation of coal. By taking account of such data it is possible to calculate the intensity of generated heat, its flow and temperature, and consequential use of oxygen during oxidation of coal. It is proposed that the ratio of carbon oxide to reduced oxygen levels along a section exposed to an emergency, as a result of oxidation can be used to determine coal temperature. This is illustrated by specific examples of mine incident analysis in the Donets Basin. Practical benefit: The identified dependences are recommended for further research and industrial application with the aim of controlling the temperature of self heating coal. Conclusions: The mathematical model for surface self heating of coal and porous substances, was approved during tests at NIIGD “Respirator” (Ukraine) and the Federal Republic of Germany, within the temperature range of 340–400 K, for use with different coal quality. It is proposed that the ratio of carbon oxide to oxygen used for oxidation reactions is utilized to determine the temperature of coal. Demonstrated full compatibility between derived results for temperature calculations and data concerning the ratio of ethylene to acetylene.
Cel: Celem badań jest określenie temperatury samonagrzewania się węgla w zależności od zawartości tlenku węgla i ubytku tlenu na odcinku awaryjnym. Aktualność badań: Potrzeba przeprowadzenia badań wiąże się z czasochłonnością wykorzystywanej dotychczas metody określenia temperatury węgla ze względu na zawartość węglowodorów nienasyconych oraz koniecznością opracowania szybkiej metody pozyskiwania danych na temat pożaru endogennego, które są niezbędne podczas wyboru odpowiednich środków do jego ugaszenia. Metody: Metody opierały się na teoretycznym modelu nieizotermicznej kinetyki heterogenicznego utleniania tlenem z powietrza węgli ze zmienną (niejednorodną) powierzchnią reakcyjną, co powodowane jest wydzielaniem metanu z węgla, a także powstawaniem i rozpadem związków powierzchniowych przy adsorpcji tlenu i powstawaniu przy powierzchni stałych produktów reakcji. Wyniki: W artykule zaproponowany został model procesu samonagrzewania się warstwy węgla na przykładzie środowiska porowatego. Założono, że wchodzący do takiej warstwy strumień filtrowanego powietrza wstępuje w reakcje chemiczne utleniania, przez co generowane jest źródło ciepła. Wydzielające się ciepło jest wydatkowane na przejście przez powierzchnię warstwy węgla i zwiększenie jego temperatury. Otrzymano rozwiązanie analityczne tego zadania. Do opisania intensywności wydzielania ciepła wykorzystano wcześniej opracowany przez autorów model matematyczny. Uwzględniono w nim zmianę zawartości tlenu i powierzchni reakcyjnej w miarę utleniania się węgla. Przeanalizowano około 30 eksperymentów polegających na określeniu powierzchni reakcyjnej węgla i otrzymano zależność między nią a stopniem metamorfizmu węgla. Zaproponowano wykorzystanie tej zależności do określenia zawartości procentowej tlenu wstępującego w reakcję utleniania węgla. Z uwzględnieniem tych danych możliwe jest wyliczenie: intensywności wydzielania ciepła, jego spadku i temperatury oraz zależności między zużyciem tlenu a utlenianiem się węgla. Autorzy przedstawili zależność, na podstawie której możliwe jest obliczenie temperatury węgla pod względem zawartości tlenku węgla i ubytku tlenu na odcinku awaryjnym. Na rzeczywistych przykładach awarii w kopalniach w Donbasie przedstawiono możliwość określenia temperatury samonagrzewania się węgla na podstawie danych analizy powietrza na odcinku awaryjnym. Znaczenie dla praktyki: Otrzymane zależności są rekomendowane do badań i zastosowań przemysłowych w celu kontroli temperatury samonagrzewania się węgla. Wnioski: Zaproponowany model matematyczny samonagrzewania się w warstwie węgla – środowisku porowatym – potwierdzony został w drodze eksperymentów przeprowadzonych przez Instytut Naukowo-Badawczy Górnictwa „Respirator” (Ukraina) i Republikę Federalną Niemiec w granicy temperatur 340–400 K na węglach o różnym stopniu uwęglenia. W celu określenia temperatury węgla zaproponowano wykorzystanie modelu opisującego stosunek zawartości tlenku węgla i tlenu biorącego udział w reakcjach utleniania. Wykazano pełną zgodność otrzymanych wyników wyliczeń temperatury z danymi w odniesieniu do etylenu i acetylenu.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2015, 3; 119-127
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies