Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fotogrametria satelitarna" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Wielosensorowa triangulacja satelitarna
The multisensor satellite triangulation
Autorzy:
Ewiak, I.
Powiązania:
https://bibliotekanauki.pl/articles/130908.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
fotogrametria satelitarna
korekcja geometryczna
wysokorozdzielczy obraz satelitarny
dokładność
satellite photogrammetry
geometric correction
VHRS
accuracy
Opis:
Podczas budowy numerycznych modeli terenu (NMT) na podstawie danych lotniczego skanowania laserowego (chmur punktów) dąży się do usunięcia punktów, które dotyczą odbić od obiektów znajdujących się na powierzchni – budynków i budowli oraz roślinności. Istnieją jednakże dziedziny gospodarki oraz nauki, które są zainteresowane uzyskaniem danych, możliwie wiernie opisujących budowę pokrywy roślinnej. Dlatego też wydaje się, że doskonalenie metodyki budowy numerycznego modelu pokrycia terenu wymaga bardziej wnikliwego podejścia, niż tylko ustalenie którędy przebiega górna granica (powierzchnia) opisująca kształt obiektu. Ze względu na przestrzenną zmienność pokrycia terenu, nie można przyjmować jednorodnych reguł przetwarzania danych dla całego obszaru, dla którego wykonano skanowanie laserowe. Istotnym jest dokonanie dokładnego rozpoznania przestrzennej dystrybucji różnych obiektów na badanym terenie oraz opracowanie charakterystyk opisujących sposób odwzorowania tych obiektów w danych skanowania laserowego. Informacje te pozwolą na zastosowanie zmiennych przestrzennie reguł przetwarzania chmur punktów skanowania laserowego – zarówno przy generowaniu NMT, jak i powierzchni opisujących budowę roślinności. W pracy przedstawiono wstępne wyniki badań nad przestrzenną dystrybucją chmury punktów skanowania laserowego różnych elementów krajobrazu, w dwóch fazach sezonu wegetacyjnego – wczesną wiosną oraz latem, z uwzględnieniem podziału rejestrowanych impulsów na pierwsze i ostanie echo. Dystrybucję przestrzenną chmur punktów pokazano w formie graficznej. Uzyskane wyniki skłaniają do podjęcia dyskusji nad niektórymi dotychczas wyrażanymi opiniami.
The article presents methodology of spatial orientation of the VHRS image block with the spatial resolution of GSD ≤ 1m, obtained by means of various sensors. The main objective of the methodical study was to determine the possibility of integration of scenes originating from different satellite systems (Ikonos-2, QuickBird-2 and Resurs-DK-1) in the process of the block geometrical correction (multisensor satellite triangulation). Two methods of the multisensor satellite triangulation were proposed. In the first of them, elements of external orientation of particular scenes determined independently in four methodical variants were used to construct a geometrically corrected satellite block. It was affirmed that the method allowed to obtain the accuracy of the satellite block triangulation on the levels of RMSEX = 0.4 m and RMSEY = 0.4 m, respectively. It was also affirmed that in the geometrical correction of each scene it was necessary to use the mathematical sensor model, supported by the measurement of the smallest number of control points. In the second method, the construction of a geometrically corrected satellite block was preceded by the relative orientation of individual scenes that the model was composed of. Taking into account the configuration of tie points it was determined that the applied method of measurement enabled obtaining the results of relative orientation on the level of 0.3 pixels of the source scene. It was also affirmed that using the RPC catalogue coefficients provided by the distributor of the satellite data it was possible to reduce the measurement of control points in positions doubled by tie points as well on the edges of the block. By nominal selection of control points designed in tie point positions and on the edge of block, it is possible to obtain the accuracy correction of the VHRS block on the levels of RMSEX = 0.5 m and RMSEY = 0.4 m, respectively.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2009, 19; 101-110
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integracja satelitarnych modeli wysokościowych
Integration of satellites digital surface model
Autorzy:
Karwel, A. K.
Kraszewski, B.
Kurczyński, Z.
Ziółkowski, D.
Powiązania:
https://bibliotekanauki.pl/articles/208990.pdf
Data publikacji:
2015
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
NMPT
interferometria radarowa
fotogrametria satelitarna
SRTM
ASTER
analiza dokładności
Interferometry
digital elevation model (DEM)
accuracy
analysis
Opis:
W artykule zaprezentowano metodę integracji danych wysokościowych z interferometrycznej misji satelitarnej SRTM (model SRTM-C, rozdzielczość 3", tj. około 90 m) oraz stereoskopowych pomiarów scen satelitarnych ASTER, pozyskanych w kanale bliskiej podczerwieni, do opracowania Numerycznego Modelu Pokrycia Terenu (NMPT) o rozdzielczości przestrzennej 1". Model ASTER charakteryzuje się większą rozdzielczością (1", tj. około 30 m), ale może wykazywać lokalne błędy o charakterze systematycznym, spowodowane głównie błędami dopasowania obrazów w obszarach o regularnej strukturze pól uprawnych. Opracowana metoda zakłada uszczegółowienie modelu interferometrycznego z wykorzystaniem modelu ASTER. Bazuje na modelu różnicowym obu NMPT poddanym działaniu filtra uśredniającego ważonego, co zachowuje w nim ewentualne błędy systematyczne. Przefiltrowany model różnicowy posłużył do poprawy modelu ASTER. Zaproponowaną metodę przetestowano na fragmencie obszaru centralnej Polski o powierzchni 31 tys. km2. Ocenę wizualną i ilościową otrzymanego zintegrowanego modelu względem danych źródłowych przeprowadzono dla trzech typów pokrycia terenu z wykorzystaniem profili terenowych oraz NMPT pozyskanego w ramach projektu ISOK. Wyboru obszarów o określonym typie pokrycia dokonano z wykorzystaniem bazy CORINE Land Cover. Miarą oceny dokładności modeli były błędy średnie liczone na podstawie różnic wysokości punktów interpolowanych z modelu oraz odpowiadających im punktów kontrolnych profili terenowych, pomierzonych techniką GPS, a także odchylenie standardowe różnic wysokości pomiędzy modelem referencyjnym ISOK a analizowanymi modelami. Ocena wizualna przeprowadzona została na fragmencie wydzielonym z całego obszaru opracowania. W wyniku zastosowania opracowanej metody otrzymany NMPT charakteryzuje się wyższą szczegółowością w porównaniu z modelem SRTM-C. Skompensowane zostały w nim również lokalne błędy systematyczne charakterystyczne dla modelu ASTER.
The article presents the method of developing a 30-m spatial resolution DSM based on integration of height data from InSAR SRTM mission and the stereoscopic measurements of ASTER satellite images. The method involves the use of 30-m ASTER model for refinement of a 90-m interferometrie SRTM model. ASTER model has a higher resolution, but it can contain local systematic errors (due to incorrect image matching in areas of the regular pattern of agricultural parcels). The differential model is generated and next smoothed with weighted averaging filter. Such a model is used to correct the ASTER DSM. The method was tested in the area of 31,000 square kilometers located in central Poland. A visual and precise evaluation of the output model relative to source data was performed with the use of terrain GPS profiles and the detailed DSM based on airborne laser scanning (ALS) data for three types of land cover. The accuracy of models was assessed by RMSE calculated from a difference between point heights interpolated from the model and the same height points taken from terrain GPS profiles. Also the standard deviation of height difference between analyzed and ALS DSM was analyzed. In the new integrated DSM, more details were noticed compared to the SRTM DSM. The height errors typical for ASTER model were compensated. The vertical accuracy of the developed DSM is close to SRTM data.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2015, 64, 2; 123-133
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies