Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Msplit estimation" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Two variants of M split estimation – similarities and differences
Autorzy:
Wyszkowska, Patrycja
Duchnowski, Robert
Powiązania:
https://bibliotekanauki.pl/articles/43852815.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
geodezja
metoda szacowania
deformacja terenu
accuracy
influence function
absolute Msplit estimation
squared Msplit estimation
Opis:
M split estimation is a novel method developed to process observation sets that include two (or more) observation aggregations. The main objective of the method is to estimate the location parameters of each aggregation without any preliminary assumption concerning the division of the observation set into respective subsets. Up to now, two different variants of M split estimation have been derived. The first and basic variant is the squared M split estimation, which can be derived from the assumption about the normal distribution of observations. The second variant is the absolute M split estimation, which generally refers to the least absolute deviation method. The main objective of the paper is to compare both variants of M split estimation by showing similarities and differences between the methods. The main dissimilarity stems from the different influence functions, making the absolute M split estimation less sensitive to gross errors of moderate magnitude. The empirical analyses presented confirm that conclusion and show that the accuracy of the methods is similar, in general. The absolute M split estimation is more accurate than the squared M split estimation for less accurate observations. In contrast, the squared M split estimation is more accurate when the number of observations in aggregations differs much. Concerning all advantages and disadvantages of M split estimation variants, we recommend using the absolute M split estimation in most geodetic applications.
Źródło:
Advances in Geodesy and Geoinformation; 2022, 71, 1; art. no. e22, 2022
2720-7242
Pojawia się w:
Advances in Geodesy and Geoinformation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Absolute Msplit estimation as an alternative for robust M-estimation
Autorzy:
Duchnowski, Robert
Wyszkowska, Patrycja
Powiązania:
https://bibliotekanauki.pl/articles/43852823.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
skanowanie laserowe
estymacja
geodezja
laser scanning
robust estimation
M-estimation
absolute Msplit estimation
Opis:
The problem of outlying observations is very well-known in the surveying data processing. Outliers might have several sources, different magnitudes, and shares within the whole observation set. It means that it is not possible to propose one universal method to deal with such observations. There are two general approaches in such a context: data cleaning or robust estimation. For example, the robust M-estimation has found many practical applications. However, there are other options, such as R-estimation or the absolute M split estimation. The latter method was created to be less sensitive to outliers than the squared M split estimation (the basic variant of Msplit estimation). From the theoretical point of view, the absolute M split estimation cannot be classified as a robust method; however, it was proved that it could be used in such a context under certain conditions. The paper presents the primary comparison between that method and a conventional robust M-estimation. The results show that the absolute M split estimation predominates over the classical methods, especially when the percentage of outliers is high. Thus, that method might be used to process LiDAR data, including mismeasured points. Processing synthetic data from terrestrial laser scanning or airborne laser scanning confirms that the absolute M split / estimation can deal with outliers sufficiently.
Źródło:
Advances in Geodesy and Geoinformation; 2022, 71, 1; art. no. e17, 2022
2720-7242
Pojawia się w:
Advances in Geodesy and Geoinformation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies