Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Peryt, M." wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
Ewaporaty cechsztynu PZ1- PZ3 bloku Gorzowa
Zechstein 1- 3 evaporites of the Gorzów Block (NW Poland)
Autorzy:
Peryt, T. M.
Powiązania:
https://bibliotekanauki.pl/articles/2074802.pdf
Data publikacji:
2010
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
cechsztyn
ewaporaty
stratygrafia sekwencji
Polska Zachodnia
Zechstein
evaporites
sequence stratigraphy
West Poland
Opis:
The Gorzów Block (West Poland) occurs in the transition zone between the PZ1 sulphate platform and the Na2 basin. In contrast to the western part of the Southern Permian Basin where the Z1 halite (Oldest Halite Na1) is normally restricted to the peripheral subbasins located south of the main basin, in Poland it occurs both in the basin centre and in the former basins of the Lower Anhydrite within the marginal sulphate platform complex, where halite sequences are thick and may have originated in a deep-water setting. The Na1 deposits have been considered so far to be LST deposits both in the marginal sulphate platform facies as well as in the basin centre. Brine salinities (and the minerals they precipitate) are controlled by brine residence times in the basin, and these are determined primarily by the absolute and the relative rates of water flow into, and brine flux out of the basin (Kendall, 2010). Thus sea-level rise in the Boreal Sea could have resulted in the increase of the brine residence times in the Zechstein basin and the deposition of more saline evaporites. Consequently, the Oldest Halite in the basin centre in Poland is regarded as the TST deposit.
Źródło:
Przegląd Geologiczny; 2010, 58, 8; 689-694
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strontium isotopes in the Zechstein (Upper Permian) anhydrites of Poland: evidence of varied meteoric contributions to marine brines
Autorzy:
Denison, R. E.
Peryt, T. M.
Powiązania:
https://bibliotekanauki.pl/articles/2059197.pdf
Data publikacji:
2009
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Polska
Zechstein
Late Permian
anhydrite
strontium isotopes
Opis:
Strontium isotope ratios have been determined on 74 anhydrite samples from seven borehole cores in the Polish Zechstein. Five of the borehole cores are located in the basin and isotope results from these samples show a nearly pure marine signal. Results from one borehole core, located near the Zechstein coastline that migrated through time, record a stronger, in consistent influence of continental strontium to a marine base. Intermittent meteoric influence is recorded in anhydrites from other borehole cores close to the carbonate platform that was emergent during the anhydrite deposition. Consistency of isotope values indicates a marine signal and there is a narrow range in consistent values from 87Sr/86Sr near deltasw –215 (0.70702) for the oldest anhydrites and near deltasw –205 (0.70712) for the youngest an hydrites. Comparison with a sea water 87Sr/86Sr curve based on samples in West Texas and a Permian-Triassic boundary value from China shows that the Polish Zechstein in these seven boreholes is latest Permian in age and major deposition represents a short time interval (~2 million years). Strontium isotope ratios reported by other workers indicate some of the younger Zechstein elsewhere indicate even greater continental influence is in agreement with the interpreted sedimentological set ing for those anhydrites.
Źródło:
Geological Quarterly; 2009, 53, 2; 159-166
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sulphur and oxygen isotope signatures of late Permian Zechstein anhydrites, West Poland: seawater evolution and diagenetic constraints
Autorzy:
Peryt, T. M.
Halas, S.
Petrivna Hryniv, S.
Powiązania:
https://bibliotekanauki.pl/articles/2059022.pdf
Data publikacji:
2010
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Permian
Zechstein
marine evaporites
sulphate isotopes
Opis:
The stable oxygen and sulphur isotope ratios of 52 anhydrite samples from three Zechstein anhydrite units (Lower Anhydrite, Upper Anhydrite and Basal Anhydrite) of West Poland show d18O values vs. VSMOW in the range of 9.4 to 15.5% (mean of 12.6 š1.3%), and d34S values vs. VCDT between 9.6 to 12.6%o (mean of 11.4 š0.6%o). A generally uniform distribution pattern of both isotopic values throughout the section, although with some random variation, implies that sulphate ions were sufficiently supplied and the basin was open during sulphate deposition. There is a slight stratigraphic differentiation of both the d18O and d34S values: the highest mean values are shown by the Upper Anhydrite and the lowest average values occur in the Basal Anhydrite. The correlation between d18 O and 8 S values is statistically significant only in case of the Basal Anhydrite. A wide range of oxygen isotopic ratios (from 11.6 to 25. l%o), with only several samples having d18O values that fall within the range of late Permian seawater, have been recorded in anhydrite cements and nodules that occur in the Main Dolomite rocks. Sulphur isotope ratios of anhydrite cements (range of 7.6 to 12.9%o, average of 10.7 š1.4%o) tend to reflect the late Permian sulphur isotopic signature of sulphate in seawater. The higher ranges of d18O and d34S values of anhydrite cements and nodules in the Main Dolomite compared to the underlying and overlying anhydrites are due to diagenetic resetting. The conversion of gypsum to anhydrite (often very early and under negligible cover) evidently did not affect the primary marine stratigraphic sulphur isotope composition of the sulphate deposits.
Źródło:
Geological Quarterly; 2010, 54, 4; 387-400
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Foraminiferal colonization related to the Zechstein (Lopingian) transgression in the western part of the Wolsztyn Palaeo-Ridge area, Western Poland
Autorzy:
Peryt, D.
Peryt, T. M.
Raczyński, P.
Chłódek, K.
Powiązania:
https://bibliotekanauki.pl/articles/2059413.pdf
Data publikacji:
2012
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Upper Permian
Zechstein
encrusting foraminifers
carbon isotopes
oxygen isotopes
transgression
breccias
Opis:
The basal Zechstein succession in SW Poland is dominated by breccias and/or conglomerates or extraclast-bearing bioclastic limestones, which were deposited during rapid flooding of the pre-existing intracontinental basin in the early Lopingian (Late Permian). Of these, the boulder-cobble breccias and conglomerates are interpreted as deposited in a rocky shore-zone where density flows and upwelling prevailed. The breccias gradually pass up into bryozoan (or other bioclastics) grainstones. The matrix-supported breccias were deposited as large extraclasts and blocks of Carboniferous rock were rolled down or detached from a cliff and were then either embedded into a carbonate sand or formed a framework supplying voids that could be colonized by tubular encrusting foraminifers. These foraminifers abound in all basal Zechstein facies (except in the debris-flow deposits) and are attributed to Palaeonubecularia. The associated faunas include other foraminifers (uniserial and hemigordiopsids), bryozoans, brachiopods, bivalves, gastropods, and microbial deposits. The prolific growth of tubular encrusting foraminifers has resulted from nutrient supply from the basin by upwelling. Botryoidal aragonite cements (also interpreted as due to upwelling) also characterize the basal Zechstein strata, although they were previously reported only from the upper Zechstein Limestone. The ẟI3C values of the basal Zechstein deposits show small variation and oscillated around 4.0%o, suggesting that these deposits are younger than the Kupferschiefer.
Źródło:
Geological Quarterly; 2012, 56, 3; 529--546
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sedimentary history and biota of the Zechstein Limestone (Permian, Wuchiapingian) of the Jabłonna Reef in Western Poland
Autorzy:
Peryt, T. M.
Raczyński, P.
Peryt, D.
Chłódek, K.
Mikołajewski, K.
Powiązania:
https://bibliotekanauki.pl/articles/191254.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Geologiczne
Tematy:
Wuchiapingian
reefs
Zechstein
bryozoans
stromatolites
aragonite cementation
neptunian dykes
carbon and oxygen isotopes
Opis:
The Jabłonna Reef, one of the reefs formed in Wuchiapingian time in the western part of the Wolsztyn palaeo-High (SW Poland), is characterized by quite irregular outlines and consists of three separate reef bodies (ca. 0.5–1.5 km2 each; the thickness of the reef complex is usually >60 m). It is penetrated by four boreholes, which show two distinct phases of bryozoan reef development during deposition of the the Zechstein Limestone. The first one occurred early in the depositional history and botryoidal aragonitic cementation played a very important role in reef formation. This phase of bryozoan reef development terminated suddenly; one possible reason was that a relative change of sea level – first a fall and then a rise – disturbed the upwelling circulation. Consequently, bioclastic deposition predominated for a relatively long time until the second phase of bryozoan reef development occurred, but the latter was not accompanied by dubious early cementation. During this second phase, reticular fenestellid bryozoans were predominant. Subsequently, microbial reefs developed and abound in the upper part of the Zechstein Limestone sections. The general shallowing-upward nature of deposition in the Jab³onna Reef area resulted in reef-flat conditions with ubiquitous, microbial deposits, in the central part of the Jab³onna Reef. Then, the reef-flat started to prograde and eventually the entire Jab³onna Reef area became the site of very shallow, subaqueous deposition. Five biofacies are distinguished in the Jab³onna Reef sections: the Acanthocladia biofacies at the base, then mollusc-crinoid, brachiopod-bryozoan, Rectifenestella and at the top, stromatolite biofacies. They represent a shallowing-upward cycle, possibly with some important fluctuation recorded as the distinctive lithofacies boundary, corresponding to the Acanthocladia/mollusc-crinoid biofacies boundary. The 13C curves of the Jab³onna 2 and Jab³onna 4 boreholes permit correlation of the trends in the middle parts of both sections and confirm the strong diachroneity of the biofacies boundaries, with the exception of the roughly isochronous Acanthocladia/ mollusc-crinoid biofacies boundary. The presence of echinoderms and strophomenid brachiopods indicates that until deposition of the lower part of the Rectifenestella biofacies, conditions were clearly stenohaline. The subsequent elimination of stenohaline organisms and progressively poorer taxonomic differentiation of the faunal assemblage are characteristic for a slight, gradual rise in salinity. The taxonomic composition of organisms forming the Jab³onna Reef shows a similarity to reefs described from England and Germany, as well as the marginal carbonate platform of SW Poland. Filled fissures were recorded in the lower part of the Jabłonna Reef. The aragonite cementation recorded in some fissure fillings implies that they originated in rocks exposed on the sea floor and are neptunian dykes.
Źródło:
Annales Societatis Geologorum Poloniae; 2016, 86, 4; 379-413
0208-9068
Pojawia się w:
Annales Societatis Geologorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Carbon isotope stratigraphy of the basal Zechstein (Lopingian) strata in Northern Poland and its global correlation
Autorzy:
Peryt, T. M.
Durakiewicz, T.
Kotarba, M. J.
Oszczepalski, S.
Peryt, D.
Powiązania:
https://bibliotekanauki.pl/articles/2058984.pdf
Data publikacji:
2012
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Upper Permian
Zechstein
organic geochemistry
Kupferschiefer
carbon isotope stratigraphy
Opis:
The Kupferschiefer (T1) records a period of basin-wide euxinic conditions, and is thus considered an excellent time-marker in the Zechstein (Lopingian) basin. Previous studies indicated that both the Kupferschiefer and Marl Slate and the overlying Zechstein Limestone (Magnesian Limestone) show remarkable changes in carbon isotopic composition towards higher 131313131313
Źródło:
Geological Quarterly; 2012, 56, 2; 285-298
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies