- Tytuł:
-
Identyfikacja złożonego układu napędowego jako systemu Wienera
Identification of the complex drive system as a Wiener system - Autorzy:
-
Lis, J.
Orłowska-Kowalska, T. - Powiązania:
- https://bibliotekanauki.pl/articles/320339.pdf
- Data publikacji:
- 2006
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
układ dwumasowy
identyfikacja parametryczna
identyfikacja nieparametryczna
system Wienera
metoda zmiennych instrumentalnych
estymator regresji jądrowej
two-mass system
parametric identification
nonparametric identification
Wiener system
instrumental variables estimate
kernel regression estimate - Opis:
-
Artykuł dotyczy identyfikacji części mechanicznej napędu dwumasowego z silnikiem indukcyjnym. W procesie identyfikacji uwzględniono występowanie w układzie trudno modelowanych zjawisk nieliniowych, takich jak luzy i tarcie suche, co spowodowało, że realizowano identyfikację nieliniowego obiektu dynamicznego. W niniejszej pracy zaproponowano identyfikację według koncepcji systemów blokowo zorientowanych, przy zastosowaniu systemu Wienera. Liniowy podsystem dynamiczny układu napędowego identyfikowano parametrycznie, za pomocą metody zmiennych instrumentalnych, natomiast trudno modelowalne nieliniowości identyfikowano nieparametrycznie, przy zastosowaniu estymatora regresji jądrowej. W procesie identyfikacji zastosowano metodę odsprzęgania podsystemu liniowego i nieliniowego, wykorzystującą właściwości pobudzenia typu PRBS.
The paper deals with the identification of the mechanical part of a two-mass drive system. The system nonlinearities were taken into account and thus the dynamical nonlinear system was identified. The identification approach took advantage of the block oriented systems theory. A block oriented Wiener system was used, which consists of the dynamic linear subsystem and the static nonlinear subsystem, connected in series. Both parametric and non-parametric identification algorithms were applied to solve the problem of Wiener system identification. The static nonlinearity was identified nonparametrically by means of the kernel regression estimate, while the dynamic linear subsystem was identified parametrically by means of the instrumental variables estimate. The method for decoupling the systems nonlinearities using the PRBS input was also applied to the identification procedure. Good results have been obtained. - Źródło:
-
Elektrotechnika i Elektronika; 2006, 25, 2; 172-176
1640-7202 - Pojawia się w:
- Elektrotechnika i Elektronika
- Dostawca treści:
- Biblioteka Nauki