Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ekhosuehi, Virtue U" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Integral equation of the Volterra type: an application to a firm-sponsored off-the-job training
Autorzy:
Ekhosuehi, Virtue U
Powiązania:
https://bibliotekanauki.pl/articles/748734.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
firm
production function
Volterra integral equation
firm, differential transform method, production function, Volterra integral equatio
Opis:
W artykule poszukuje  sie funkcji produkcji pojedynczego produktu w przedsiebiorstwie finansującym szkolenia ze środków uzyskanych ze sprzedazy tego produktu.  Funkcja produkcji ma zalozona forme  równania całkowego Volterry a kryterium optymalizacji jest krótkoterminowa  maksymalizacja zysku, w którym praca jest jedynym czynnikiem produkcji.  W badaniu wykorzystano funkcję Cobba-Douglasa z ustalona iloscia kapitału. Wyniki wskazują, że otrzymana funkcja produkcji firmy jest funkcją analityczną, a wymagana część zysku potrzebna do sfinansowania szkolenia leży w przedziale z określoną górną granicą.
This paper is concerned with deriving, using the Volterra integral equation, a production function for a single product firm financing off-the-job training from its revenue from output. The short-run scenario where labour is the only variable factor of production is studied within the ambit of the law of diminishing returns and the condition for profit-maximization. The study utilizes the Cobb-Douglas production function wherein capital is fixed as a theoretical underpinning. The results indicate that the production function of the firm is a transcendental function and that the proportion of output required to finance the training lies within an interval with a definite upper bound.
Źródło:
Mathematica Applicanda; 2016, 44, 2
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies