- Tytuł:
-
The use of artificial neural networks to predict the spatial variability of grain quality during combine harvest of wheat
Wykorzystanie sztucznych sieci neuronowych do prognozowania zmienności przestrzennej jakości ziarna podczas zbioru kombajnowego pszenicy - Autorzy:
-
Niedbała, G.
Czechlowski, M.
Wojciechowski, T. - Powiązania:
- https://bibliotekanauki.pl/articles/335514.pdf
- Data publikacji:
- 2013
- Wydawca:
- Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
- Tematy:
-
sztuczne sieci neuronowe
MLP
predykcja neuronowa
selektywny zbiór zbóż
spektroskopia VIS-NIR
artificial neural network
neural prediction
selective grain harvest
VIS-NIR spectroscopy - Opis:
-
The aim of the study was to attempt to build and validate the neural model controlling the qualitative selection of the stream of grain mass as early as the stage of combine harvesting of winter wheat. The model uses the highest possible number of data describing locally changeable environmental conditions such as: protein content, moisture and yield of wheat grain, soil abundance in basic nutrients (total Kjeldahl nitrogen, exchangeable phosphorus and potassium, magnesium) and additionally - the pH coefficient, content of organic matter in soil and the relative altitude. The construction of the neural model was preceded with a multiple regression analysis. The results of the analysis (α = 0.05) indicated statistical significance of all of the traits under analysis, which influence grain quality and are defined as the content of protein. The MLP neural network (9-30-1) consisted of one hidden layer containing 30 neurons, one output and nine inputs. The network learning was done with the BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm in a single phase during 827 epochs with the SOS error function. The study was a part of the development project No. R12 0073 06 entitled “Development and validation of the technology for separation grain stream during cereals selective harvesting”, financed by the Polish National Centre for Research and Development.
Celem pracy było podjęcie próby budowy i walidacji modelu neuronowego sterującego selekcją jakościową strumienia masy ziarna już na etapie kombajnowego zbioru pszenicy ozimej. Model wykorzystuje jak najwięcej danych opisujących lokalnie zmienne warunki środowiskowe takie jak: zawartości białka, wilgotność i wielkość plonu ziarna pszenicy, zasobność gleby w podstawowe składniki pokarmowe (azot ogólny, fosfor i potas wymienny, magnez) oraz dodatkowo współczynnik pH, zawartość materii organicznej w glebie oraz wysokość względną NPM. Budowę modelu neuronowego poprzedzono analizą regresji wielorakiej. Wyniki tej analizy na poziomie α = 0,05 wskazały istotność statystyczną wszystkich badanych cech wpływających na jakość ziarna zdefiniowaną jako zawartość białka. Zbudowana sieć neuronowa typu MLP (9-30-1) składała się jednej warstwy ukrytej zawierającej 30 neuronów, jednego wyjścia i dziewięciu wejść. Uczenie sieci z wykorzystaniem algorytmu BFGS wykonano jednofazowo w trakcie 827 epok z funkcją błędu SOS. Pracę zrealizowano w ramach projektu rozwojowego nr R12 0073 06 pt: „Opracowanie i walidacja technologii rozdziału strumienia ziarna podczas selektywnego zbioru zbóż” finansowanego przez NCBIR. - Źródło:
-
Journal of Research and Applications in Agricultural Engineering; 2013, 58, 1; 126-129
1642-686X
2719-423X - Pojawia się w:
- Journal of Research and Applications in Agricultural Engineering
- Dostawca treści:
- Biblioteka Nauki