- Tytuł:
- ℤ2 × ℤ2 -Cordial Cycle-Free Hypergraphs
- Autorzy:
-
Cichacz, Sylwia
Görlich, Agnieszka
Tuza, Zsolt - Powiązania:
- https://bibliotekanauki.pl/articles/32361757.pdf
- Data publikacji:
- 2021-11-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
V 4 -cordial graph
hypergraph
labeling of hypergraph
hyper-tree - Opis:
- Hovey introduced A-cordial labelings as a generalization of cordial and harmonious labelings [7]. If A is an Abelian group, then a labeling f : V (G) → A of the vertices of some graph G induces an edge labeling on G; the edge uv receives the label f(u) + f(v). A graph G is A-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one and (2) the induced edge label classes differ in size by at most one. The problem of A-cordial labelings of graphs can be naturally extended for hypergraphs. It was shown that not every 2-uniform hypertree (i.e., tree) admits a ℤ2 × ℤ2-cordial labeling [8]. The situation changes if we consider p-uniform hypertrees for a bigger p. We prove that a p-uniform hypertree is ℤ2 × ℤ2-cordial for any p > 2, and so is every path hypergraph in which all edges have size at least 3. The property is not valid universally in the class of hypergraphs of maximum degree 1, for which we provide a necessary and sufficient condition.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2021, 41, 4; 1021-1040
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki