Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Zbiór niezbalansowany" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Wykrywanie zagrożenia upadłością jako problem klasyfikacji danych niezbalansowanych
Bankruptcy prediction as imbalanced classification problem
Autorzy:
Paliński, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/2041253.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Klasyfikacja
Preprocessing
Uczenie maszynowe
Upadłość
Zbiór niezbalansowany
Bankruptcy
Classification
Imbalanced dataset
Machine learning
Opis:
W artykule wykorzystano wybrane algorytmy uczenia maszynowego oraz techniki przygotowania danych (preprocessing) stosowane w klasyfikacji na zbiorach niezbalansowanych w celu oceny ich skuteczności w prognozowaniu upadłości z użyciem danych zawierających wskaźniki finansowe podmiotów gospodarczych. Trafność prognoz upadłości na pierwotnym niezbalansowanym zbiorze danych o przeważającym udziale podmiotów prowadzących działalności nad upadłymi była bliska zero. Trafność prognozowania upadłości klasyfikatorów utworzonych na zbiorach zbalansowanych była odwrotnie proporcjonalna do całkowitej trafności klasyfikacji i wahała się od 10% – dla całkowitej trafności klasyfikacji wynoszącej 93%, do 77% – dla całkowitej trafności klasyfikacji równej 49%. Lepsze wyniki klasyfikacji osiągały algorytmy gradient boosting i drzewo klasyfikacyjne w stosunku do sztucznej sieci neuronowej. W problemie klasyfikacji na zbiorach niezbalansowanych wystąpił efekt wymiany – albo możliwe jest zwiększenie trafności klasyfikacji upadłości kosztem nadmiarowości obiektów kla-syfikowanych jako upadłe, albo – zwiększenie trafności klasyfikacji całkowitej algorytmu kosztem zmniejszenia trafności klasyfikacji samej upadłości.
Selected machine learning algorithms and data preprocessing techniques were used in the article to predict bankruptcy on an unbalanced data set containing financial ratios. The accuracy of bankruptcy forecasts on the original unbalanced data set of the prevailing share of entities still operating over the bankrupt ones was close to zero. The accuracy of bankruptcy forecasting classifiers created on balanced sets ranged from 10% to 77%, but was inversely proportional to the total accuracy of the classification, which ranged from 93% to 49%. Better classification results were achieved by the classification trees algorithms in relation to the artificial neural network. In the problem of classification in unbalanced data sets the effect of substitution occurred – or it is possible to increase the accuracy of classification of bankruptcy at the expense of redundancy of objects classified as bankrupt, or – to increase the accuracy of the overall classification of the algorithm at the expense of decreasing the classification of the bankruptcy itself.
Źródło:
Studia Ekonomiczne; 2020, 395; 66-79
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies