Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "estymacja sygnałów" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Track-Before-Detect Algorithm for Noise Objects
Algorytmy śledzenia przed detekcją dla obiektów szumowych
Autorzy:
Mazurek, P.
Powiązania:
https://bibliotekanauki.pl/articles/158288.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
śledzenie
estymacja
przetwarzanie sygnałów
przetwarzanie obrazów
śledzenie przed detekcją
tracking
estimation
signal processing
image processing
Track-Before-Detect
Opis:
Track-Before-Detect (TBD) systems are used for tracking of the object signal under a high noise conditions. Noise objects are special class of objects with a zero mean value so they can not be processed directly. Possibilities of object detection and tracking for modified tracking system by numerical examples (Monte Carlo approach) are proposed and tested in this paper. The moving window is used for selection of samples for the standard deviation calculation.
Systemy śledzenia przed detekcją wykorzystują podejście akumulacyjne do estymacji trajektorii obiektów w warunkach małego SNR, także dla SNR<1. W artykule zaproponowano system śledzenia przed detekcją z wykorzystaniem algorytmu rekurencyjnego Spatio-Temporal TBD dla obiektów szumowych zakłóconych dodatkowym szumem. W przypadku gdy poziom szumów obiektu jest zbliżony a nawet mniejszy niż szumu tła detekcja obiektu i wyznaczenie trajektorii nie jest możliwa za pomocą innych metod niż śledzenie przed detekcją. System bazuje na analizie zmian odchylenia standardowego dla szumów gaussowskich poprzez wykorzystanie ruchomego okna analizy dla sygnału wejściowego. Bez zastosowania przekształcenia sygnału do przestrzeni odchyleń standardowych detekcja nie jest możliwa, ponieważ konwencjonalne rozwiązanie śledzenia przed detekcją uśrednia sygnał, który dla obiektu szumowego ma wartość średnią równą zero. W analizie numerycznej wykorzystano podejście Monte Carlo do oszacowania własności algorytmu dla różnych wartości współczynnika wygładzania, rozmiaru okna oraz stosunku szumów obiektu do szumu tła. Jako miarę jakości wykorzystano odległość między znanym położeniem środka obiektu z generatora a położeniem największej wartości estymowanej przez algorytm śledzenia przed detekcją. Jakość estymacji rośnie ze wzrostem rozmiaru obiektu oraz wartością współczynnika wygładzania Algorytm charakteryzuje się dużym stopniem możliwości zrównoleglenia przetwarzania.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 10, 10; 1183-1185
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies