Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Time series forecasting" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Prognozowanie wypłat z bankomatów
Forecasting Withdrawals from ATMs
Autorzy:
Gurgul, Henryk
Suder, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/543001.pdf
Data publikacji:
2015
Wydawca:
Główny Urząd Statystyczny
Tematy:
Forecasting
Cash machine
Time-series
Forecasting models
Prognozowanie
Bankomaty
Szeregi czasowe
Modele prognostyczne
Opis:
Celem artykułu jest porównanie jakości prognoz zarówno ex post, jak i ex ante dotyczących zapotrzebowania na gotówkę w bankomatach, przy wykorzystaniu różnych metod prognozowania na podstawie szeregów czasowych wypłat. (fragment tekstu)
The authors explain links between strategy of replenishment of ATMs and costs of ATMs holders. Cost minimalization depends on accuracy of forecasts of withdrawals from ATMs. In the paper the several forecasting methods of withdrawals from ATMs in Euronet network installed in Małopolskie and Podkarpackie voivodships are applied. The used forecasting models are compared based on quality of ex post and ex ante forecasts. The model used in forecasting process depends on many factors e.g. location of ATM or calendar effects. The importance and role of these factors are analyzed in the paper. The authors supplied evidence, that suggested forecasts based on weighted averages are more accurate than forecasts based on methods applied by other authors. (original abstract)
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2015, 8; 25-48
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie teorii szarych systemów do przewidywania przyszłych ofert składanych na aukcjach pierwszej ceny poprzez pryzmat modelu szarego GM(1,1)
Application of Gray System Theory to Model the First-Price Auction
Autorzy:
Barczak, Stanisław
Powiązania:
https://bibliotekanauki.pl/articles/587238.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Aukcje
Metody ekonometryczne
Prognozowanie
Szeregi czasowe
Auctions
Econometric methodology
Forecasting
Time-series
Opis:
This paper presents the possibility of applying the theory of gray systems, with particular emphasis on the model GM (1,1) in the modeling of the first price auction. The paper presents the properties of the model GM (1,1) for the ultrashort time series representing the bid made by the participants at the first price auction. An analysis of the residuals simulation model based on the length of the time series and forecasting capabilities based on gray model GM (1,1). The analysis shows that with the decreasing the number of observations in time series (short time series) decreases the expost forecast error. This property is very important in modeling the course of the auction and in particular predicting possible future offerings. Model GM (1,1) can be considered in applications for masterpieces auctions.
Źródło:
Studia Ekonomiczne; 2013, 146; 7-18
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sposoby badania trafności systemu prognoz sprzedaży w przedsiębiorstwie
Methods of Searching Accuracy of Sales Forecasting Systems in a Company
Autorzy:
Doszyń, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/589321.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Metody prognozowania
Prognozowanie sprzedaży
Prognozy ekonometryczne
Szeregi czasowe
Econometric forecasts
Forecasting methods
Sales forecasting
Time-series
Opis:
Celem artykułu jest zaprezentowanie metod monitorowania trafności systemu prognoz sprzedaży w przedsiębiorstwie. W pierwszej części scharakteryzowano system prognostyczny wspomagający zarządzanie w centrum magazynowo-dystrybucyjnym zlokalizowanym w województwie zachodniopomorskim. W dalszej kolejności opisano sposoby badania trafności prognoz, oparte na rozkładach wybranych błędów prognoz ex post. W związku z tym, iż w analizowanym przedsiębiorstwie wiele produktów charakteryzuje się niską częstością sprzedaży, zaproponowano błąd ex post, który może być stosowany w tego rodzaju przypadkach.
The purpose of this article was to present methods of monitoring the accuracy of the sales forecasts in the company. In the first part of the article prognostic system supporting management of the warehouse and distribution centre located in Western Pomerania has been characterized. Then methods of verifying predictions accuracy, based on the distributions of some ex-post forecast errors were described. Because of the fact that in analysed company sales frequency was low in case of many products, ex-post forecast error useful in such cases was proposed.
Źródło:
Studia Ekonomiczne; 2015, 241; 9-23
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ redukcji szumu losowego metodą najbliższych sąsiadów na wyniki prognoz otrzymanych za pomocą największego wykładnika Lapunowa
The Effect of the Reduction Random Noise by the Method of Nearest Neighbors on Forecasting Results Obtained Using the Largest Lyapunov Exponent
Autorzy:
Miśkiewicz-Nawrocka, Monika
Powiązania:
https://bibliotekanauki.pl/articles/587384.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Badania empiryczne
Prognozowanie
Prognozowanie rynku pracy
Szeregi czasowe
Wykładniki Lapunowa
Empirical researches
Forecasting
Labour market forecasting
Lyapunov exponents
Time-series
Opis:
In this paper has been researched the effect of random noise reduction on the accuracy of forecasts of economic time series obtained using the largest Lyapunov exponent method (LEM). The aim of the article was to compare the prediction errors obtained by LEM for the series before and after the random noice reduction and the time series filtred by models ARMA. The nearest neighbors method was used to reduce random noise in economic time series.
Źródło:
Studia Ekonomiczne; 2013, 159; 82-98
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie metody moving block bootstrap w prognozowaniu szeregów czasowych z wahaniami okresowymi
The Use of the Moving Block Bootstrap Method in Periodic Time Series Forecasting
Autorzy:
Kończak, Grzegorz
Miłek, Michał
Powiązania:
https://bibliotekanauki.pl/articles/586452.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Analiza szeregów czasowych
Metody statystyczne
Modele ARIMA
Prognozowanie matematyczne
Szeregi czasowe
Autoregressive integrated moving average (ARIMA) models
Mathematical forecasting
Statistical methods
Time-series
Time-series analysis
Opis:
The aim of the analysis of the time series is, among others, to facilitate the formulation of prognosis. The basis for the inference of the future variables are their future realizations. There are various methods used in time series forecasting, such as for example naïve method, Holt-Winters models, ARIMA models and various simulation methods. One of the most popular and widely used simulation method in statistical research is the bootstrap method proposed by B. Efron. It is usually applied in measuring the estimates of the variance and testing the hypotheses in cases when the distribution of the test statistic is unknown. This method does not require for the selected samples to be from the standard normal distribution population. Due to the construction of the random samples in this method, there is usually no possibility to directly apply it in the analysis of the periodic time series. In the literature written on this subject, there are the proposals to introduce some modifications to the bootstrap method that would provide the possibility to conduct such analyses. One of such methods is the moving block bootstrap. In the present essay, we will present the proposal to apply this method to create the confidential intervals for the periodic time series forecasts. The results gathered by applying that method are compared with the results obtained via the classic construction of the confidential intervals for the forecasts and on the confidential intervals based on ARIMA models.
Źródło:
Studia Ekonomiczne; 2014, 203; 91-100
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie podejścia aproksymującego i klasyfikującego w prognozowaniu kursów wybranych akcji na GPW w Warszawie S.A. z użyciem jednokierunkowych sieci neuronowych
Forecasting Stock Prices Using Feed-Forward Neural Network - a Comparison of Approximation and Classification Approaches
Autorzy:
Kasznia, Anna
Powiązania:
https://bibliotekanauki.pl/articles/589117.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Giełda papierów wartościowych
Kurs akcji
Prognozowanie
Sieci neuronowe
Szeregi czasowe
Forecasting
Neural networks
Share price
Stock market
Time-series
Opis:
In this paper two approaches to financial time series forecasting using neural networks were compared. First one, the function approximation approach, in which neural networks are trained to forecast the exact one day ahead value of stock price. And the second one, classification approach, in which the output variable is the direction of future stock price movements. The aim of this work was to check if using the classification models can lead to better results in terms of direction of change forecasting and profits generated by their forecasts. This research was conducted on the basis of the time series of daily closing stock prices for three companies listed on the Warsaw Stock Exchange. Simulations show that some of the approximating models achieved satisfactory results in terms of the directional symmetry measure, although the best results for each of the analyzed company have been achieved for classification models.
Źródło:
Studia Ekonomiczne; 2013, 146; 59-67
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predykcja szeregów czasowych algorytmem uwzględniającym przesuwne okno czasowe i podział jednostkowy szeregów
Time Series Prediction Algorithm Containing Time Window and Divition Unit Series
Autorzy:
Hadaś-Dyduch, Monika
Powiązania:
https://bibliotekanauki.pl/articles/589443.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Ekonomiczny w Katowicach
Tematy:
Algorytmy
Analiza falkowa
Prognozowanie
Szeregi czasowe
Sztuczne sieci neuronowe (SSN)
Algorithms
Artificial neural networks (ANN)
Forecasting
Time-series
Wavelet analysis
Opis:
Celem artykułu jest przedstawienie autorskiego algorytmu do predykcji szeregów czasowych. Algorytm oparto na sztucznych sieciach neuronowych oraz analizie wielorozdzielczej. Jednakże główną cechą algorytmu, dającą dobrą jakość prognozy, jest podział wszystkich uwzględnionych w analizie szeregów na kilkuelementowe podszeregi oraz uzależnienie predykcji danego szeregu od innych szeregów ekonomicznych. Aplikację algorytmu przeprowadzono na szeregu prezentującym WIG. Prognozę WIG uzależniono od notowań indeksów Dow Jones, DAX, Nikkei, Hang Seng, z uwzględnieniem przesuwnego okna czasowego. Wyznaczono, jako przykładową aplikację autorską, prognozę WIG na okres 10, 20 i 30 dni.
This article presents the author's algorithm for time series prediction. The algorithm based on artificial neural networks and multiresolution analysis. However, the main feature of the algorithm, giving a good quality of forecasts, it is all included in the division series analysis on several elements under-series and dependence prediction of a series of other economic ranks. The application of the algorithm was performed on a series of presenting WIG. The forecast WIG made dependent on trading the Dow Jones, DAX, Nikkei, Hang Seng taking into account the shift of the time window. They were, as a sample application copyright forecast WIG for a period of 10, 20 and 30 days.
Źródło:
Studia Ekonomiczne; 2015, 241; 40-50
2083-8611
Pojawia się w:
Studia Ekonomiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies