Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "remote sensing vegetation indices" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Zróżnicowanie spektralne wybranych gatunków muraw wysokogórskich Doliny Gąsienicowej narażonych na wydeptywanie
Variability of spectral characteristics of selected high-mountain plant species of Gasienicowa Valey exposed for trampling
Autorzy:
Kycko, M.
Zagajewski, B.
Kozłowska, A.
Oprządek, M.
Powiązania:
https://bibliotekanauki.pl/articles/132353.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
Tatrzański Park Narodowy
szata roślinna
teledetekcyjne wskaźniki roślinności
ruch turystyczny
wydeptywanie
Kasprowy Wierch
Dolina Gąsienicowa
pomiary spektrometryczne
ASD FieldSpec
Tatra Mts. National Park
Vegetation
remote sensing vegetation indices
tourism
trampling
Gąsienicowa valley
spectrometric measurements
Opis:
This paper presents analysis of plant cover condition in Gasienicowa Valley in the Tatra Mts. depending on various trampling intensity. Measurements were taken with ASD FieldSpec 3 spectrometer (its spectral range is 350-2500nm) on 8 dominant plant species of alpine swards: Juncus trifidus, Oreochloa disticha, Agrostis rupestris, Deschampsia flexuosa, Festuca airoides, Festuca picta, Luzula alpino-pilosa, Nardus stricta. These plant species were located: 0-5m, 5-10m and more than 10m distant from a touristic trail (control point). Spectral characteristics as well as vegetation indices were analyzed with ANOVA test, which showed differiential resistance to trampling of investigated plant species. The most resistant species were: Nardus stricta and Deschampsia flexuosa, whereas Oreochloa disticha and Festuca airoides appeared to be vulnerable to trampling. However, all vegetation indices for plant species were in its optimum range, so it proves that they are in a good condition. The analysis of vegetation indices enabled choosing those groups, which are the most useful in the research of mountain vegetation condition. They are: NDVI, ARVI, EVI from the broadband greeness group and mSR705 and mNDVI from narrowband greenness group (measuring chlorophyll content and cell structure), as well as WBI, NDWI, NDII from canopy water content group. The most important factor that effects investigated plant species condition is water content. The research showed that hyperspectral analysis is useful in studying human impact on vegetation cover and needs to be developed.
Źródło:
Teledetekcja Środowiska; 2012, 47; 75-86
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena kondycji drzewostanów Tatrzańskiego Parku Narodowego za pomocą metody drzewa decyzyjnego oraz wielospektralnych obrazów satelitarnych Landsat 5 TM
Assessment of the condition of forests in the Tatra National Park using decision tree method and multispectral Landsat TM satellite images
Autorzy:
Ochtyra, A.
Zagajewski, B.
Kozłowska, A.
Marcinkowska-Ochtyra, A.
Jarocińska, A.
Powiązania:
https://bibliotekanauki.pl/articles/972978.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Leśne
Tematy:
drzewostany
kondycja drzew
metody oceny
drzewa decyzyjne
teledetekcja satelitarna
obrazy satelitarne
satelita Landsat TM
leśnictwo
lasy górskie
Tatrzański Park Narodowy
forest
assessment of condition
vegetation indices
remote sensing
the Tatras
Landsat TM
Opis:
The paper presents a method of Landsat 5 Thematic Mapper satellite image processing to assess the condition of forests in the Tatra National Park (southern Poland). Selected images were acquired on 1987/09/01, 2005/09/02 and 2011/09/03 from the same sensor with maximum time interval for the first and last scene and from similar phenological period. Firstly, the data were radiometrically corrected using the ATCOR 2/3 software and Digital Terrain Model from the ASTER mission. Quality of the correction was assessed calculating RMSE for reflectance values from images and resampled spectral characteristics collected in terrain. RMSE was in range 3−10%. Next, basing on Landsat images, Normalized Difference Infrared Index (NDII) and a Maximum Likelihood supervised classificatory, following dominant land cover types were identified: forests (including dwarf pine), grasslands, rocks, lakes, shadows (additionally clouds were dis−tinguished on data from 1987/09/01). It allowed to select forest areas with producer accuracy not worse than 97.69% and user accuracy not worse than 98.31%. On corrected Landsat images Normalized Difference Vegetation Index (NDVI, an overall vegetation state) and Moisture Stress Index (MSI, canopy water content) were calculated. Vegetation indices discriminated forest state using the decision tree method. The worst overall condition was observed for the 1987 (about 21% of forest stands were in the worst condition and 87% were in medium condition), while the best one in 2005 (75.51% forest stands were in good condition and 10.66% were in the best condition). In case of 2011, the overall condition was quite good, but there were large areas with poor condition caused by bark beetle outbreaks. Proposed method allows for a fast and objective assessment of forest condition. It is possible to detect damaged areas or stands in poor condition. It can be complement for traditional methods of monitoring and management in forestry and nature protection.
Źródło:
Sylwan; 2016, 160, 03; 256-264
0039-7660
Pojawia się w:
Sylwan
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies