Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Naziemne skanowanie laserowe" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
The Development of Terrestrial Laser Scanning Technology and Its Applications in Mine Shafts in Poland
Technologia Laserowego Skanowania Naziemnego Zastosowania w Szybie Pionowym w Polsce
Autorzy:
Lipecki, Tomasz
Kim, Thi Thu Huong
Powiązania:
https://bibliotekanauki.pl/articles/318584.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
Terrestrial Laser Scanning
Mobile Terrestrial Laser Scanning
Polish Mining Surveying System
skanowanie laserowe
naziemne skanowanie laserowe
mobilne naziemne skanowanie laserowe
polski system geodezji górniczej
TLS
MTLS
MSS
Opis:
Laser scanners are used more and more as surveying instruments for various applications. With the advance of high precisions systems, laser scanner devices can work in most real-world environments under many different conditions. In the field of mining surveying open up a new method with data capturing. Mining industry requires precise data in order to be able to have a as-built documentation of the facility. Nowadays, the mines are increasingly deepened. For the safe operation of the underground mine, special attention is paid to vertical transport and a set of devices supporting it, mounted in mining shafts. All components must meet stringent criteria for proper operation. The classic geodetic measurements and mechanical tests are long-lasting and do not always provide the full range of information needed about the condition of the object. This paper reports about terrestrial laser scanning method and system mobile terrestrial laser scanning, which has been applied at many vertical shafts in mines of Poland for determining geometric deformation of vertical shaft elements. This system gives high precision 1–3 mm in every horizontal cross-section. Processing time is very quickly and need only few staff to implement all system.
Skanery laserowe są coraz częściej używane jako urządzenia geodezyjne do różnych zastosowań. Wraz z rozwojem systemów o wysokiej precyzji, skanery laserowe mogą pracować w większości rzeczywistych środowisk w wielu różnych warunkach. W dziedzinie geodezji górniczej otwierają się nowe metody gromadzenia danych. Górnictwo wymaga precyzyjnych danych, aby móc posiadać dokumentację powykonawczą obiektu. Obecnie kopalnie są coraz bardziej pogłębione. Dla bezpiecznej eksploatacji podziemnej kopalni szczególną uwagę przywiązuje się do transportu pionowego oraz zespołu wspierających urządzeń, zamontowanych w szybach górniczych. Wszystkie komponenty muszą spełniać rygorystyczne kryteria prawidłowego działania. Klasyczne pomiary geodezyjne i badania mechaniczne są długotrwałe i nie zawsze dostarczają pełnego zakresu potrzebnych informacji o stanie obiektu. W artykule opisano metodę naziemnego skanowania laserowego oraz systemowe mobilne naziemne skanowanie laserowe, które zostało zastosowane w wielu pionowych szybach w polskich kopalniach do wyznaczania odkształceń geometrycznych pionowych elementów szybów. System ten daje wysoką precyzję 1-3 mm w każdego przekroju poziomym. Czas przetwarzania jest bardzo szybki, a do wdrożenia całego systemu potrzeba tylko kilku pracowników.
Źródło:
Inżynieria Mineralna; 2020, 1, 2; 301-310
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of terrestrial laser scanning data in developing a 3D model
Zastosowanie danych naziemnego skaningu laserowego w opracowaniu modelu 3D
Autorzy:
Piech, Izabela
Powiązania:
https://bibliotekanauki.pl/articles/119213.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Geometrii i Grafiki Inżynierskiej
Tematy:
terrestial laser scanning
TLS
3D modeling
Leica Cyclone
naziemne skanowanie laserowe
modelowanie 3d
Opis:
The publication includes the measurement of the small architecture object by means of terrestrial laser scanning. In addition, the primary goal is to visualize the object in the form of a 3D model. The 3D model was made on the basis of a unified point cloud with a resolution of 2mm in MicroStation V8i (SelectSeries 3). The point cloud, on the other hand, consisted of 7 scans that represented 7 uniformly distributed around and in the middle of the architectural site of the sites. To connect the scans were used binding points - so-called reference balls with a matt and white surface. The Leica Cyclone program orientated the scans and created an alignment report. The model created in this way was unified and the file was exported with the help of special tools until it received the file: ".pod". Based on this file, a 3D model was created. It is also impossible to skip procedures such as texturing, visualization, which made it possible to present an interesting model of a selected object. The object that was chosen was a wooden bridge with benches and a gazebo located in the southwestern part of Dębnicki Park at Praska Street in the district of VIII Dębniki in Krakow.
W publikacji uwzględniono pomiar obiektu małej architektury techniką naziemnego skaningu laserowego. Ponadto celem nadrzędnym jest wykonanie wizualizacji obiektu w postaci modelu 3D. Model 3D został wykonany na podstawie zunifikowanej chmury punktów z rozdzielczością 2mm w programie MicroStation V8i (SelectSeries 3). Natomiast chmura punktów składała się z 7 skanów, które reprezentowały 7 rozmieszczonych równomiernie w terenie wokół i na środku obiektu architektonicznego stanowisk. Do powiązania skanów posłużyły punkty wiążące- tzw. kule referencyjne charakteryzujące się matową i białą powierzchnią. W programie Leica Cyclone dokonano orientacji skanów i utworzono raport przedstawiający wyrównanie. Na tak utworzonym modelu dokonano unifikacji I wyeksportowano plik za pomocą specjalnych narzędzi aż do momentu otrzymania pliku: „.pod”. Na podstawie tego pliku utworzono model 3D. Nie sposób również pominąć procedur takich jak: teksturowanie, wizualizacja, które umożliwiły zaprezentowanie w sposób interesujący modelu wybranego obiektu. Obiektem, który został wybrany był drewniany mostek z ławkami i altaną zlokalizowany w południowo-zachodniej części Parku Dębnickiego przy ul. Praskiej w dzielnicy VIII Dębniki w Krakowie.
Źródło:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics; 2019, 32; 73-78
1644-9363
Pojawia się w:
Journal Biuletyn of Polish Society for Geometry and Engineering Graphics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Automatyczne określanie średnicy pnia, podstawy korony oraz wysokości sosny zwyczajnej (Pinus Silvestris L.) na podstawie analiz chmur punktów 3D pochodzących z wielostanowiskowego naziemnego skanowania laserowego
Automatic determination of trunk diameter, crown base and height of scots pine (Pinus Sylvestris L.) Based on analysis of 3D point clouds gathered from multistation terrestrial laser scanning
Autorzy:
Ratajczak, M.
Wężyk, P.
Powiązania:
https://bibliotekanauki.pl/articles/130230.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
naziemne skanowanie laserowe
TLS
przetwarzanie chmury punktów
algorytmy
Charakterystyka biometryczna
terrestrial laser scanning
point cloud processing
algorithms
biometric characteristics
Opis:
Rozwój technologii naziemnego skanowania laserowego (TLS) w ostatnich latach spowodował jej uznanie i wdrożenie w wielu gałęziach gospodarki, w tym w leśnictwie i ochronie przyrody. Wykorzystanie chmur punktów 3D TLS w procesie inwentaryzacji drzew i drzewostanów oraz określaniu wybranych cech biometrycznych drzewa (np. średnicy pnia, wysokości drzewa, podstawy korony, liczby kształtu pnia) oraz wielkości surowca drzewnego (objętość drzew) staje się już praktyką. Wartością dodaną technologii TLS poza dokładnością samego pomiaru jest automatyzacja procesu przetwarzania chmury punktów 3D pod katem ekstrakcji wybranych cech drzew i drzewostanów. Praca prezentuje autorskie oprogramowanie (GNOM) służące do automatycznego pomiaru wybranych parametrów drzew na podstawie chmury punktów pozyskanych skanerem laserowym FARO FOCUS 3D. Dzięki opracowanym algorytmom (GNOM) określono lokalizację pni drzew na kołowej powierzchni badawczej oraz dokonano pomiarów: pierśnicy pni (d1.3), kolejnych średnic pnia na różnych wysokościach pnia, wysokości wierzchołka drzewa, podstawy korony i objętości pnia (metoda pomiaru sekcyjnego) oraz korony drzewa. Prace badawcze realizowano na terenie Nadleśnictwa Niepołomice w jednogatunkowym drzewostanie sosnowym (Pinus sylvestris L.) na powierzchni kołowej o promieniu 18.0 m w zasięgu której znajdowało się 16 sosen (14 z nich ścięto). Drzewostan w wieku 147 lat miał jednopiętrową budowę i był pozbawiony podszytu. Naziemne skanowanie laserowe przeprowadzono tuż przed pracami zrębowymi. Pierśnicę 16 sosen określono w pełni automatycznie algorytmem GNOM z błędem około +2,1% w stosunku do pomiaru referencyjnego wykonanego średnicomierzem. Średni, bezwzględny błąd pomiaru w chmurze punktów - półautomatycznymi metodami "PIXEL" (pomiędzy punktami) oraz PIPE (wpasowanie walca) w programie FARO Scene 5.x, wykazał błąd odpowiednio: 3.5% oraz 5.0%. Za referencyjną wysokość wierzchołka przyjęto pomiar taśmą mierniczą na ściętym drzewie. Średni błąd automatycznego określania wysokości drzew algorytmem GNOM na podstawie chmury punktów TLS wyniósł 6.3%, i był niewiele większy niż przy zastosowaniu manualnej metody pomiaru na przekrojach w programie TerraScan (Terrasolid; błąd ~5.6%). Pomiar wysokości podstawy korony wykazał błąd na poziomie +9,5%. Referencję w tym przypadku stanowił pomiar taśmą wykonany ściętych sosnach. Przetwarzanie chmur punktów TLS algorytmami GNOM w przypadku 16 analizowanych sosen trwało poniżej 10 min (37 sek. /drzewo). W pracy wykazano jednoznacznie przydatność technologii TLS w leśnictwie i jej wysoką dokładność przy pozyskiwaniu danych biometrycznych drzew oraz dalszą potrzebę zwiększania stopnia automatyzacji przetwarzania chmur punktów 3D pochodzących z naziemnego skanowania laserowego.
Rapid development of terrestrial laser scanning (TLS) in recent years resulted in its recognition and implementation in many industries, including forestry and nature conservation. The use of the 3D TLS point clouds in the process of inventory of trees and stands, as well as in the determination of their biometric features (trunk diameter, tree height, crown base, number of trunk shapes), trees and lumber size (volume of trees) is slowly becoming a practice. In addition to the measurement precision, the primary added value of TLS is the ability to automate the processing of the clouds of points 3D in the direction of the extraction of selected features of trees and stands. The paper presents the original software (GNOM) for the automatic measurement of selected features of trees, based on the cloud of points obtained by the ground laser scanner FARO. With the developed algorithms (GNOM), the location of tree trunks on the circular research surface was specified and the measurement was performed; the measurement covered the DBH (l: 1.3m), further diameters of tree trunks at different heights of the tree trunk, base of the tree crown and volume of the tree trunk (the selection measurement method), as well as the tree crown. Research works were performed in the territory of the Niepolomice Forest in an unmixed pine stand (Pinussylvestris L.) on the circular surface with a radius of 18 m, within which there were 16 pine trees (14 of them were cut down). It was characterized by a two-storey and even-aged construction (147 years old) and was devoid of undergrowth. Ground scanning was performed just before harvesting. The DBH of 16 pine trees was specified in a fully automatic way, using the algorithm GNOM with an accuracy of +2.1%, as compared to the reference measurement by the DBH measurement device. The medium, absolute measurement error in the cloud of points - using semi-automatic methods "PIXEL" (between points) and PIPE (fitting the cylinder) in the FARO Scene 5.x., showed the error, 3.5% and 5.0%,.respectively The reference height was assumed as the measurement performed by the tape on the cut tree. The average error of automatic determination of the tree height by the algorithm GNOM based on the TLS point clouds amounted to 6.3% and was slightly higher than when using the manual method of measurements on profiles in the TerraScan (Terrasolid; the error of 5.6%). The relatively high value of the error may be mainly related to the small number of points TLS in the upper parts of crowns. The crown height measurement showed the error of +9.5%. The reference in this case was the tape measurement performed already on the trunks of cut pine trees. Processing the clouds of points by the algorithms GNOM for 16 analyzed trees took no longer than 10 min. (37 sec. /tree). The paper mainly showed the TLS measurement innovation and its high precision in acquiring biometric data in forestry, and at the same time also the further need to increase the degree of automation of processing the clouds of points 3D from terrestrial laser scanning.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2015, 27; 123-138
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geometryzacja form zjawisk krasowych na podstawie badań metodą georadarową
Geometrization of karst phenomena based on GPR research
Autorzy:
Ortyl, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/2075956.pdf
Data publikacji:
2019
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
metoda georadarowa
kras
wapienie
jaskinia
pustki
modelowanie danych
naziemne skanowanie laserowe
ground penetrating radar
GPR
karst
limestones
cave
voids
finite differential time domain
FDTD
terrestrial laser scanning
TLS
Opis:
Recognition of subsoil in areas threatened with discontinuous deformation associated with the existence of natural and mining voids can be implemented by various geophysical methods. The purpose of such research, apart from confirming the existence of voids, is to determine their spatial extent. This is not a simple issue, regardless of the geophysical method used. This paper discusses the possibilities of geometrization of karst phenomenon localization using the ground penetrating radar (GPR) method by the example of a karst cave as a natural void. The area of data acquisition is located on limestone formations with numerous karstforms. The study object is the main hall of the karst cave with a height of up to 3 m, located at a depth of 3 to 7 m below the surface. Such location and shape of the subsurface structure made it possible for the author to perform a wide range of research. Their original aspects are presented in this paper. The shape of the hall was obtained using terrestrial laser scanning (TLS). The GPR data were obtained employing the 250 MHz shielded antenna that was directly positioned using a robotized total station with the option of automatic target tracking. Thus, the GPR and geodetic data were immediately achieved in a uniform coordinate system. The accuracy of the data obtained in this way is discussed in this paper. The author’s original algorithm for processing of GPR data into a point cloud is presented. Based on the results obtained, it was possible to compare the GPR signal, which represents the shape of the cave hall, in relation to its image in the form of a point cloud from terrestrial laser scanning. A unique part of this paper is the selection of filtration procedures and their parameters in optimal GPR data processing, which were widely discussed and documented in a way beyond the standard filtration procedures. A significant contribution is the analysis that was carried out on the data obtained in the field and on the model data generated using the finite difference method. Modeling was carried out for two wave sources: exploding reflector and point. The presented methodology and discrimination between the actual shape of the cave, GPR field data and model data made it possible for the author to draw many conclusions related to the possibilities of shape geometrization of the subsurface voids determined by the GPR method.
Źródło:
Przegląd Geologiczny; 2019, 67, 4; 252--269
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies