Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wezyk, P." wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
Automatyczne określanie średnicy pnia, podstawy korony oraz wysokości sosny zwyczajnej (Pinus Silvestris L.) na podstawie analiz chmur punktów 3D pochodzących z wielostanowiskowego naziemnego skanowania laserowego
Automatic determination of trunk diameter, crown base and height of scots pine (Pinus Sylvestris L.) Based on analysis of 3D point clouds gathered from multistation terrestrial laser scanning
Autorzy:
Ratajczak, M.
Wężyk, P.
Powiązania:
https://bibliotekanauki.pl/articles/130230.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
naziemne skanowanie laserowe
TLS
przetwarzanie chmury punktów
algorytmy
Charakterystyka biometryczna
terrestrial laser scanning
point cloud processing
algorithms
biometric characteristics
Opis:
Rozwój technologii naziemnego skanowania laserowego (TLS) w ostatnich latach spowodował jej uznanie i wdrożenie w wielu gałęziach gospodarki, w tym w leśnictwie i ochronie przyrody. Wykorzystanie chmur punktów 3D TLS w procesie inwentaryzacji drzew i drzewostanów oraz określaniu wybranych cech biometrycznych drzewa (np. średnicy pnia, wysokości drzewa, podstawy korony, liczby kształtu pnia) oraz wielkości surowca drzewnego (objętość drzew) staje się już praktyką. Wartością dodaną technologii TLS poza dokładnością samego pomiaru jest automatyzacja procesu przetwarzania chmury punktów 3D pod katem ekstrakcji wybranych cech drzew i drzewostanów. Praca prezentuje autorskie oprogramowanie (GNOM) służące do automatycznego pomiaru wybranych parametrów drzew na podstawie chmury punktów pozyskanych skanerem laserowym FARO FOCUS 3D. Dzięki opracowanym algorytmom (GNOM) określono lokalizację pni drzew na kołowej powierzchni badawczej oraz dokonano pomiarów: pierśnicy pni (d1.3), kolejnych średnic pnia na różnych wysokościach pnia, wysokości wierzchołka drzewa, podstawy korony i objętości pnia (metoda pomiaru sekcyjnego) oraz korony drzewa. Prace badawcze realizowano na terenie Nadleśnictwa Niepołomice w jednogatunkowym drzewostanie sosnowym (Pinus sylvestris L.) na powierzchni kołowej o promieniu 18.0 m w zasięgu której znajdowało się 16 sosen (14 z nich ścięto). Drzewostan w wieku 147 lat miał jednopiętrową budowę i był pozbawiony podszytu. Naziemne skanowanie laserowe przeprowadzono tuż przed pracami zrębowymi. Pierśnicę 16 sosen określono w pełni automatycznie algorytmem GNOM z błędem około +2,1% w stosunku do pomiaru referencyjnego wykonanego średnicomierzem. Średni, bezwzględny błąd pomiaru w chmurze punktów - półautomatycznymi metodami "PIXEL" (pomiędzy punktami) oraz PIPE (wpasowanie walca) w programie FARO Scene 5.x, wykazał błąd odpowiednio: 3.5% oraz 5.0%. Za referencyjną wysokość wierzchołka przyjęto pomiar taśmą mierniczą na ściętym drzewie. Średni błąd automatycznego określania wysokości drzew algorytmem GNOM na podstawie chmury punktów TLS wyniósł 6.3%, i był niewiele większy niż przy zastosowaniu manualnej metody pomiaru na przekrojach w programie TerraScan (Terrasolid; błąd ~5.6%). Pomiar wysokości podstawy korony wykazał błąd na poziomie +9,5%. Referencję w tym przypadku stanowił pomiar taśmą wykonany ściętych sosnach. Przetwarzanie chmur punktów TLS algorytmami GNOM w przypadku 16 analizowanych sosen trwało poniżej 10 min (37 sek. /drzewo). W pracy wykazano jednoznacznie przydatność technologii TLS w leśnictwie i jej wysoką dokładność przy pozyskiwaniu danych biometrycznych drzew oraz dalszą potrzebę zwiększania stopnia automatyzacji przetwarzania chmur punktów 3D pochodzących z naziemnego skanowania laserowego.
Rapid development of terrestrial laser scanning (TLS) in recent years resulted in its recognition and implementation in many industries, including forestry and nature conservation. The use of the 3D TLS point clouds in the process of inventory of trees and stands, as well as in the determination of their biometric features (trunk diameter, tree height, crown base, number of trunk shapes), trees and lumber size (volume of trees) is slowly becoming a practice. In addition to the measurement precision, the primary added value of TLS is the ability to automate the processing of the clouds of points 3D in the direction of the extraction of selected features of trees and stands. The paper presents the original software (GNOM) for the automatic measurement of selected features of trees, based on the cloud of points obtained by the ground laser scanner FARO. With the developed algorithms (GNOM), the location of tree trunks on the circular research surface was specified and the measurement was performed; the measurement covered the DBH (l: 1.3m), further diameters of tree trunks at different heights of the tree trunk, base of the tree crown and volume of the tree trunk (the selection measurement method), as well as the tree crown. Research works were performed in the territory of the Niepolomice Forest in an unmixed pine stand (Pinussylvestris L.) on the circular surface with a radius of 18 m, within which there were 16 pine trees (14 of them were cut down). It was characterized by a two-storey and even-aged construction (147 years old) and was devoid of undergrowth. Ground scanning was performed just before harvesting. The DBH of 16 pine trees was specified in a fully automatic way, using the algorithm GNOM with an accuracy of +2.1%, as compared to the reference measurement by the DBH measurement device. The medium, absolute measurement error in the cloud of points - using semi-automatic methods "PIXEL" (between points) and PIPE (fitting the cylinder) in the FARO Scene 5.x., showed the error, 3.5% and 5.0%,.respectively The reference height was assumed as the measurement performed by the tape on the cut tree. The average error of automatic determination of the tree height by the algorithm GNOM based on the TLS point clouds amounted to 6.3% and was slightly higher than when using the manual method of measurements on profiles in the TerraScan (Terrasolid; the error of 5.6%). The relatively high value of the error may be mainly related to the small number of points TLS in the upper parts of crowns. The crown height measurement showed the error of +9.5%. The reference in this case was the tape measurement performed already on the trunks of cut pine trees. Processing the clouds of points by the algorithms GNOM for 16 analyzed trees took no longer than 10 min. (37 sec. /tree). The paper mainly showed the TLS measurement innovation and its high precision in acquiring biometric data in forestry, and at the same time also the further need to increase the degree of automation of processing the clouds of points 3D from terrestrial laser scanning.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2015, 27; 123-138
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pomiary GNSS w przestrzeni leśnej przy wykorzystaniu różnej klasy odbiorników oraz wybranych trybów pomiaru
GNNS measurements in forest environment using various receivers and measurement modes
Autorzy:
Szostak, M
Wężyk, P.
Powiązania:
https://bibliotekanauki.pl/articles/130752.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
GPS
ASG-EUPOS
dGPS
RTK
TLS
Opis:
The main aspect of the study was to evaluate the use of GNSS technology for measurement possibilities and obtaining the required position accuracy of objects in a forest area: point (eg. the location of tree trunks, landmarks), linear (eg. roads, paths) and surface (eg. the area of various plant types). The objects position with different measurement modes and various GPS receivers was done, starting from receivers for tourists, cartographs and modern multifrequency and multichannel (NAVSTAR-GPS+ GLONASS) GNSS receivers designed to work with network of reference stations. The measurements were assessed measuring the required number of sessions conducted in different measurement modes, to obtain an accurate position (defined by Forest Management Guide) of objects in the forest. Test sessions were analyzed in 100, 300, 600 seconds or even hours. Tests performed on different days, months, in different weather conditions, in the open area and under canopy, and for different phenological phases of vegetation (trees with leaves and without leaves). Evaluation of DGPS position determination was carried out in relation to the results obtained from RTK measurements (lots of hours of observation in the open area), measurements of total station and terrestrial laser scanning (precisely determined positions of tree trunks and course of the drainage ditch).
Głównym przedmiotem badań było określenie możliwości stosowania technologii GNSS w leśnictwie, w zakresie realizacji pomiarów obiektów przestrzeni leśnej o charakterze: punktowym (np. pnie drzew, graniczniki, pomniki przyrody), liniowym (np. drogi, ścieżki, wizury) oraz powierzchniowym (np. wydzielenia, oddziały, zbiorowiska roślinne, obszary pożarów). Lokalizację przestrzenną wyznaczano przy wykorzystaniu różnej klasy odbiorników GNSS, pracujących w różnych trybach pomiaru. Wykorzystano odbiorniki klasy: turystycznej, kartograficzne oraz nowoczesne wieloczęstotliwościowe, wielokanałowe (NAVSTAR-GPS + GLONASS) odbiorniki, współpracujące z siecią stacji referencyjnych ASG-EUPOS w trybie RTK oraz postprocessingu. Ocenie pod kątem możliwości wyznaczania pozycji podlegały sesje pomiarowe złożone z: 100, 300, 600 epok a nawet prowadzone ponad godzinę. Testy wykonano losowo w różnych porach dnia, miesiąca, w różnych warunkach atmosferycznych, w przestrzeni otwartej (drogi leśne, zręby, luki) jak i pod okapem drzewostanu oraz w rożnych fazach fenologicznych drzewostanu (okres bez liści – spoczynku oraz z liśćmi – w pełni sezonu wegetacji). Wyznaczone metodami GNSS pozycje obiektów, zostały odniesione do wyników referencyjnych, uzyskanych na podstawie pomiarów RTK (wielogodzinne obserwacje w terenie otwartym) oraz pomiarów tachimetrycznych, a także przetworzonych chmur punktów, pochodzących z naziemnego skanowania laserowego (precyzyjnie wyznaczone pozycje pni drzew oraz przebieg rowu melioracyjnego).
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2013, 25; 217-231
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Określenie biomasy sosny zwyczajnej (pinus sylvestris l.) w Puszczy Niepołomickiej na podstawie przestrzennego rozkładu chmury punktów naziemnego skaningu laserowego
Biomass and volume profile of the scots pine (pinus sylvestris l.) In the niepolomice forest based on terrestrial laser scanning data – a case study
Autorzy:
Wężyk, P.
Szostak, M.
Tompalski, P.
Powiązania:
https://bibliotekanauki.pl/articles/346170.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Informacji Przestrzennej
Tematy:
masa części nadziemnej
TLS
woksel
sekwestracja węgla
above-ground biomass
voxel
carbon sequestration
Opis:
Najnowocześniejsze technologie teledetekcyjne takie jak naziemny skaning laserowy (TLS) umożliwiają pomiar 3D rzeczywistej struktury obiektów przestrzeni w tym drzew. Dane dostarczone przez TLS - bardzo gęste chmury punktów - reprezentują kształty i powierzchnie obiektów oraz ich rodzaj (np. z wykorzystaniem intensywności wiązki laserowej). Ekosystem leśny odgrywa ważną rolę w aspekcie regulacji zawartości dwutlenku węgla (CO2) w atmosferze jak również w zakresie sekwestracji węgla. Węgiel w lesie jest kumulowany w biomasie drzewnej: pnie drzew, gałęzie, Korzenie, liście (igły) oraz w materii organicznej w glebie. W modelowaniu sekwestracji węgla w krajobrazie z wykorzystaniem analiz przestrzennych oraz w zarządzaniu przestrzenią leśną informacja 2D wydaje się nie być wystarczająca. Potrzebna jest informacja 3D tj. rozkład przestrzenny biomasy i objętości drzewostanu. Jest to ważne nie tylko dla zarządzających przestrzenią leśną, ale i w aspekcie polityki energetycznej oraz konwencji międzynarodowych. Dla określenia przestrzennego rozkładu biomasy przeprowadzono badania w Puszczy Niepołomickiej (Regionalna Dyrekcja Lasów Państwowych w Krakowie, pododdział 153f) w drzewostanie sosnowym (Pinus sylvestris L.). Średni wiek drzewostanu wynosił 147 lat, średnia wartość pierśnicy D = 42 cm i wysokości H = 27 metrów (wg SILP). Kołowa powierzchnia badawcza (r = 18 m; powierzchnia 1017.88 m2) składała się z 16 sosen (średnia: D 46 cm; H = 26.0 m), które zostały zeskanowane przy użyciu skanera laserowego FARO PHOTON 80. Wykonano 4 skany (1 pozycja centralna i 3 dodatkowe wokół) aby uzyskać pełną reprezentację pni i koron drzew (gałęzie z igłami). Dla określenia biomasy została wybrana testowa sosna zwyczajna o pierśnicy 52.7 cm, wysokości 28.3 m, długości korony 8.6 m oraz szerokości korony 9.3 m. W celu uzyskania referencji dla analiz chmury punktów TLS zostały w terenie pomierzone średnica i obwód pnia w sekcjach co 1 m. W terenie zebrano: 490.0 kg gałęzi, 109.3 kg pędów z igłami oraz 13.5 kg jemioły. W sumie biomasa mokrej korony wyniosła 612.8 kg (96.3 t/ha). Badania laboratoryjne przeprowadzono na 6 próbkach pędów z igłami, które po wysuszeniu ważyły 53.3 kg, w tym: igły 34.0 kg, pędy 19.3 kg. Wartości z badań laboratoryjnych porównano do wyznaczonych wg wzoru empirycznego (Socha, Wężyk 2007), które wyniosły: dla pędów z igłami w stanie wilgotnym 104.1 kg. (-4.8% różnicy) i w stanie suchym 71.2 kg (33.5% różnicy). Na podstawie analizy chmury punktów TLS (woksele) został wyznaczony pionowy rozkład biomasy.
The state of the art technology like Terrestrial Laser Scanning (TLS) allows measuring the 3D structure of real world objects, including trees. The data delivered by the TLS - very dense point clouds - represent shapes and surfaces of the objects and their type (e.g. using intensity of the laser beam). Forest ecosystem plays an important role in the regulation of the carbon dioxide (CO2) content in the atmosphere and in carbon sequestration as well. In forest, carbon is stored in wood biomass: tree trunks, branches, roots, foliage (needles and leaves) and in the organic material in soil. Using GIS spatial analyses for the carbon sequestration modeling, the 2D information seems to be not sufficient. 3D information of the spatial biomass and volume distribution is needed and is important not only for forest professionals, but also for energy policy and international conventions. The study was done in the Niepolomice Forest in the mature Scots pine (Pinus sylvestris L.) stand (Regional Forest Directorate Krakow. compartment 153f). The age of the stand was 147 years and mean values of DBH 42 cm and height 27 m. The study circular plot (r=18m; area ~1000sqm) consisted of 16 pines (mean: DBH 46 cm; H = 26.0 m) which were scanned using the FARO PHOTON 80. The 4 scans (1 central position and 3 additional around the central one) were made to get full representation of the tree stems and crowns (branches with needles). Tree number 13 (DBH 52.7 cm; H 28.3 m; crown length 8.6 m. crown width 9.3 m) was selected for the biomass study. The stem diameter and perimeter was measured every 1m (section) to get the references for the TLS analysis. The wet biomass of the selected tree parts was: 490.0 kg - branches. 109.3 kg shoots with needles 13.5 kg – mistletoe. The sum of the wet crown biomass was 612.8 kg (96.3 t/ha). The laboratory elaboration based of 6 samples from the crown allowed to receive the dry biomass of crown (53.3 kg) and its fractions: needles 34.0 kg, shoots 19.3 kg. The obtained results were compared to empiric formula (Socha, Wężyk 2007), which delivered results for the wet biomass of shots with needles 104.1 kg (4.8 % difference) and dry biomass 71.2 kg (33.5 % difference). Based on the voxel analysis of the TLS data the vertical characteristic of the volume and biomass distribution was determined.
Źródło:
Roczniki Geomatyki; 2012, 10, 5; 79-89
1731-5522
2449-8963
Pojawia się w:
Roczniki Geomatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preliminary results of the monumental tree monitoring based on terrestrial laser scanning - a case study of the Oak Bartek in Zagnańsk (Poland)
Wstępne wyniki monitorowania Dębu Bartek w Zagnańsku z wykorzystaniem chmur punktów naziemnego skanowania laserowego
Autorzy:
Wężyk, P.
Szostak, M.
Zięba, K.
Rysiak, P.
Hawryło, P.
Ratajczak, M.
Powiązania:
https://bibliotekanauki.pl/articles/130476.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
lidar
TLS
3D modeling
RevScan
LiDAR
modelowanie 3D
Opis:
In April 2013, the Laboratory of Geomatics launched the project under the acronym “Bartek 3D” in cooperation with the Research Section of Students from the AGH in Krakow, Pedagogical University and the Jagiellonian University as well. The main aim of the project is to monitor the biggest and probably one of the oldest trees in Poland - Oak Bartek in Zagnańsk (N 50o59’14”; E 20o38’59”), based on multi-temporal Terrestrial Laser Scanning (TLS) technology. One of the results of the project should be a 3D model of Oak Bartek and detection of the changes in the shape of the tree. Terrestrial Laser Scanning and the traditional forest inventory measurements were performed during the Leaf-OFF season in April 2013 and April 2014 and repeated in Leaf-ON period in July 2013 and October 2014 with using scanners: FARO FOCUS 3D, RIEGL VZ-400, LEICA C10 and RevScan (HandyScan). The results based on TLS technology showed some differences comparing to existing data obtained by traditional measurements for forestry inventory: • Height (H) of the tree: altimeter Vertex (Haglöf) H = 29.31 m; HTLS = 28.49 m; • Trunk circumference (L) measured with stretched tape: LST = 9.80 m; adjacent along the shape of bark: LT = 13.70 m; TLS measurments: LTLS1/4 = 9.97 m oraz LRevScan = 13.54 m • The average diameter at breast height (DBH130cm) calculated on the basis of 3D basal area of stem DBHTLS1/4 = 3.03 m (DBHT = 3.12 m).
W kwietniu 2013 roku w Laboratorium Geomatyki rozpoczęto projekt „Bartek 3D”, realizowany przy współudziale Sekcji Studenckich Kół Naukowych z Uniwersytetu Rolniczego w Krakowie, Akademii Górniczo-Hutniczej w Krakowie, Uniwersytetu Pedagogicznego w Krakowie oraz Uniwersytetu Jagiellońskiego. Jako cel projektu przyjęto monitoring największego i jednego z najstarszych drzew w Polsce, tj. Dębu Bartek w Zagnańsku, (N:50o59’14”; E: 20o38’59”), prowadzony na drodze cyklicznego naziemnego skanowania laserowego. Jednym z efektów projektu ma być model 3D Bartka oraz opracowanie archiwalnych materiałów kartograficznych wraz z integracją wieloźródłowych danych w środowisku GIS. Skanowanie wykonano w okresie bezlistnym (kwiecień 2013 i 2014) i powtórzono w ulistnionym (lipiec 2013, październik 2014). Wykorzystano nowoczesne skanery naziemne: FARO FOCUS 3D (dzięki uprzejmości AGH w Krakowie, IBL oraz firmy TPI sp. z o.o.), LEICA C10 (AGH), VZ-400 (RIEGL; Laser-3D) a także RevScan HandyScan firmy Creaform (Casp System). Pierwsze wyniki pomiarów Dębu Bartek technologią TLS wykazały pewne różnice w stosunku do istniejących danych pozyskanych metodami tradycyjnymi: • wysokość drzewa - wysokościomierz Haglöf Vertex: H = 29.31 m; analiza chmury punktów: HTLS = 28.49 m; • obwód pnia pomierzony naciągniętą taśmą mierniczą: LST = 9.80 m; przylegającą wzdłuż załamań i szczelin kory: LT = 13.70 m; wyznaczony z pomiarów TLS: LTLS1/4 = 9.97 m oraz LRevScan = 13.54 m; • średnia pierśnica (DBH130cm drzewa obliczona na podstawie pola przekroju DBHTLS1/4 = 3.03 m (DBHT = 3.12 m).
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2015, 27; 185-200
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie technologii naziemnego skaningu laserowego w określaniu wybranych cech drzew i drzewostanów
The application of terrestrial laser scanning for determining the selected trees and forest stand parameters
Autorzy:
Wężyk, P.
Sroga, R.
Szwed, P.
Szostak, M.
Tompalski, P.
Kozioł, K.
Powiązania:
https://bibliotekanauki.pl/articles/130874.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
naziemny skaning laserowy
TLS
pierśnica (d)
pierśnicowe pole przekroju drzewa (g)
miąższość pnia (V)
terrestrial laser scanning
DBH
basal area
volume of tree trunk
Opis:
Rozwój technologii pozyskiwania geodanych nabrał w ostatnich latach dużego tempa co skutkuje rewolucyjnymi zmianami w wielu dziedzinach gospodarki, w tym w leśnictwie, gdzie obserwuje się wdrażanie takich rozwiązań jak naziemny skaning laserowy (Terrestrial Laser Scanning; TLS). Pomiary wybranych cech drzew takich jak: wysokość, średnica, zbieżystość i objętości (miąższość grubizny) pnia są przedmiotem badań i wdrożeń. Generowane zbiory danych (chmur punktów) TLS wymagają automatycznego procesu ich przetwarzania. Prezentowana praca dotyczy zastosowania metody TLS w inwentaryzacji lasu, tj. określaniu wybranych parametrów takich jak pole przekroju pierśnicowego drzewa (g), wysokości (h) i w efekcie miąższość pnia (V). Analizie poddano drzewostan sosnowy w Nadleśnictwie Milicz (wydzielenie 236a; wiek 105 lat). Skaning przeprowadzono z 4 stanowisk stosując skaner fazowy FARO LS 880. Dane referencyjne dla średnicy pnia pozyskano tradycyjnymi instrumentami (pierśnicomierz) oraz w oparciu o lotniczy skaning laserowy dla wysokości. Testowano szereg metod i wzorów na obliczenie miąższości grubizny pni 21 drzew, tj.: metodę brył obrotowych (3 różne zestawy par przekrojów: 1.3 /6.0; 2.0/5.0 oraz 2.0/6.0 m nad gruntem) oraz pomiar sekcyjny. Obie bazują na algorytmie określania pola przekroju wycinków pnia metodą otoczki wypukłej. Za referencję przyjęto tzw. wzór empiryczny dla sosny oraz zamiennie pomiar sekcyjny TLS (długość sekcji 0.5m). Stosowano także tradycyjną metodę bazującą na tzw. tablicach miąższości drzew stojących. Wyniki wskazują, iż miąższości uzyskane metodą sekcyjnego pomiaru TLS nie różnią się istotnie statystycznie od stosowanego w praktyce leśnej wzoru empirycznego, a wartości różnic sięgają jedynie 1.5%. W przypadku wzoru na bryły obrotowe, różnice w określaniu miąższości na poziomie powierzchni sięgają od 6.1% (przekroje z wysokości: 2.0/6.0m) do 8.4% (2.0/5.0m;) powodując jej zaniżenie. Wartości maksymalne określone na poziomie pojedynczych drzew różnią się czasem aż o 38.4% (2.0/5.0), co wskazuje na zmienność geometryczną brył pni drzew. Praca potwierdziła przydatność metody pomiaru sekcyjnego TLS oraz potrzebę dalszych prac nad opracowaniem nowych standardów i parametrów w inwentaryzacji lasu oraz konieczność stosowania zautomatyzowanych procesów przetwarzania danych.
The development of geodata acquiring technology has become very fast in recent years and leads to changes in many areas of economy, also in forestry, where new, revolutionary solutions such as terrestrial laser scanning are being implemented. Measurements of such tree characteristics, as the tree height, DBH, taper and the stem volume are subject of a number of studies. Generated sets of data (point clouds) need a chain of automatic processing. This paper describes the application of TLS in forest inventory control, i.e. in determining several parameters such as basal area (g), height (h) and finally the stem volume (V). The 105 years old pine stand in Milicz Forest District was analysed (plot no. 8). Scanning was performed from 4 stations with the use of a FARO LS 880 laser scanner. Reference data were collected using both the traditional instruments (DBH), and airborne laser scanning (h). Several methods and formulas were tested to calculate the stem volume, i.e. methods based on solid of revolution (involving 3 different pairs of cross-sections: 1.3 /6.0; 2.0/5.0 and 2.0/6.0 m above the ground), and sectional measurements. In both methods, the surface area of the crosssections was calculated using the author's algorithm (convex hulls). As the reference, the so-called empirical formula designed for pine was applied, together with volume calculated for 0.5 m sections on TLS point cloud. Traditional methods based on tables with volumes calculated for single trees were also used. The results indicate that volume measurements based on sections do not differ statistically from volumes calculated by means of the empirical formula, while the differences amount to 1.5 % only. As regards the method based on solid of revolution, the differences amount to 6.1% (cross-sections: 2.0/6.0 m, Std. dev 8.0) and 8.4% (2.0/5.0 m) causing the underestimation of the volume. Maximum values, calculated for single trees, are sometimes very high (38.4% for 2.0/5.0 m cross-sections), which indicates geometrical differences in the stem solid. The paper confirmed usability of section measurements within TLS point cloud and the need for further research on defining new standards and parameters for forest inventory control, as well as the necessity of applying automatic algorithms for data processing.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2009, 19; 447-457
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies