Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ship propulsion" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
A Step by Step Approach for Evaluating the Reliability of the Main Engine Lube Oil System for a Ships Propulsion System
Autorzy:
Anantharaman, M.
Khan, F.
Garaniya, V.
Lewarn, B.
Powiązania:
https://bibliotekanauki.pl/articles/116248.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Ship Propulsion
Main Engine
Main Propulsion
Lubricating Oil System
Markov Analysis
reliability
Propulsion System
Engine Lube Oil System
Opis:
Effective and efficient maintenance is essential to ensure reliability of a ship's main propulsion system, which in turn is interdependent on the reliability of a number of associated sub- systems. A primary step in evaluating the reliability of the ship's propulsion system will be to evaluate the reliability of each of the sub- system. This paper discusses the methodology adopted to quantify reliability of one of the vital sub-system viz. the lubricating oil system, and development of a model, based on Markov analysis thereof. Having developed the model, means to improve reliability of the system should be considered. The cost of the incremental reliability should be measured to evaluate cost benefits. A maintenance plan can then be devised to achieve the higher level of reliability. Similar approach could be considered to evaluate the reliability of all other sub-systems. This will finally lead to development of a model to evaluate and improve the reliability of the main propulsion system.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2014, 8, 3; 367-371
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stopping of Ships Equipped with Azipods
Autorzy:
Nowicki, J.
Powiązania:
https://bibliotekanauki.pl/articles/117172.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Azipods, Propeller
Stopping od Ships
Ship Propulsion
ship model
Stopping Tests
LNG Carrier
Stopping Manoeuvres
Opis:
The paper contains a description of different possibilities of stopping a large ship equipped with azipods. The model tests were carried out to compare the effectiveness of stopping the ship using the different methods. The ship model used in stopping tests reproduces a large LNG carrier of capacity ~150 000 m3.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2014, 8, 3; 373-376
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Coefficients of Propeller-hull Interaction in Propulsion System of Inland Waterway Vessels with Stern Tunnels
Autorzy:
Kulczyk, J.
Tabaczek, T.
Powiązania:
https://bibliotekanauki.pl/articles/117051.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Propulsion System
Inland Waterway Vessel
Stern Tunnels
Ship Propulsion
Propeller-Hull Interaction
Hydrodynamics
ANSYS Fluent
hull efficiency
Opis:
Propeller-hull interaction coefficients - the wake fraction and the thrust deduction factor - play significant role in design of propulsion system of a ship. In the case of inland waterway vessels the reliable method of predicting these coefficients in early design stage is missing. Based on the outcomes from model tests and from numerical computations the present authors show that it is difficult to determine uniquely the trends in change of wake fraction and thrust deduction factor resulting from the changes of hull form or operating conditions. Nowadays the resistance and propulsion model tests of inland waterway vessels are carried out rarely because of relatively high costs. On the other hand, the degree of development of computational methods enables’ to estimate the reliable values o interaction coefficients. The computations referred to in the present paper were carried out using the authors’ own software HPSDKS and the commercial software Ansys Fluent.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2014, 8, 3; 377-384
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Study on applying the Catfish Biofuel in The Mekong Delta for The Marine Diesel Engine
Autorzy:
Quan, P. W.
Phuoc, H. T.
Powiązania:
https://bibliotekanauki.pl/articles/115953.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Ship Propulsion
marine diesel engine
Catfish Biofuel
Mekong Delta
diesel oil
Exhaust Gas
Petrol Oil Replacement
biofuel
Opis:
The manufacturing of Catfish products has been developed rapidly in the Mekong delta. Every year, about 1.2 million tons of Catfish and 150,000 tons of biofuel are produced. The biofuel B100 manufactures in Mekong delta satisfies the America standard ASTM D6751; EURO EN 14214 or Vietnamese standard TCVN 7717. Mekong delta, a lower land area, has a large inland water way system with around 100.000 river boats that operate with marine diesel engine. Using the biofuel for the marine diesel engine in area will reduce the HC, CO, SOx and NOx emission to the environment. Therefore, with a study on applying the catfish biofuel, it will reduce the climate change by the increasing of sea water level and save energy by using green energy to replace petrol oil.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2015, 9, 4; 523-529
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improving the Efficiency of a High Speed Catamaran Through the Replacement of the Propulsion System
Autorzy:
Melo, G.
Echevarrieta, I.
Serra, J. M.
Powiązania:
https://bibliotekanauki.pl/articles/116469.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
Ship Propulsion
Propulsion System
High Speed Catamaran
High Speed Craft (HSC)
MARPOL Annex VI
Energy Efficiency Operational Index (EEOI)
Marine Gas Oil (MGO)
Improving the Efficiency
Opis:
The high speed vessels are primarily designed for short distances services as public transport of passengers and vehicles. The range of high speed, according to the Code of high-speed vessels begins at 20 knots, which depends on the cruise speed you desire for your vessel; you will have to use the most appropriate type of propellant. In general, in the past 20 years, they have been building high-speed vessels with speeds above 33 knots, which meant installing water jet propellants coupled to powerful engines and therefore of high consumption of fuel, increasing operating costs and causing increased air pollution. Although the prices of fuel have been reduced to half, due to the sharp fall in oil prices, the consumption of fuel and the air pollution remains high at these speeds and powers used, in addition to that the reduction of the time spent on each trip is not excessive, mainly in short routes that are less than an hour . This article is about adapting a ship of high-speed service, with a maximum speed in tests of 34 knots and to reduce its operating costs (fuel, maintenance, etc.) and make it economically viable; before the transformation, this vessel was operating with a service speed of 22 knots, and with a consumption per mile of 135 litters of MGO. The transformation process has consisted by: – Replacement of the two original water jet with four shaft lines with fix pitch propeller. – Replacement of the two original main engines (2 x 6500 kW = 13000 kW) by four engines (4 x 1380kW = 5.520 kW). – Changing the underwater hull shape to fit the new propellers and maximize its efficiency. – Relocation of auxiliary engines, to achieve the most efficient trim. – Installation of two lateral propellers to improve maneuverability and shorten the total time of journey. After the reform and the return to service of the vessel with a service speed of over 22 knots, it has been verified that the consumption per mile is of 45 litters MGO, representing a reduction of 65% of consumption and even more reduction of emissions as the new engines comply with the latest regulations.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2015, 9, 4; 531-535
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies