Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "superconducting magnetic energy storage" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Wpływ nadprzewodnikowych zasobników energii na pracę systemu elektroenergetycznego
Influence SMES for the work of electrical power system
Autorzy:
Saniawa, D.
Hebda, K.
Powiązania:
https://bibliotekanauki.pl/articles/315036.pdf
Data publikacji:
2017
Wydawca:
Instytut Naukowo-Wydawniczy "SPATIUM"
Tematy:
magazynowanie energii
SMES
Superconducting Magnetic Energy Storage
zasobnik energii elektrycznej
system elektroenergetyczny
energy storage
electricity storage systems
electrical power system
Opis:
O magazynowaniu energii mówi się zwykle w kontekście pełnego wykorzystania energii ze źródeł odnawialnych, które dostarczają prąd nie tylko wtedy, kiedy jest konkretne na niego zapotrzebowanie. Jednakże z punktu widzenia elektroenergetyki to tylko jeden z powodów ich rozwoju. Wdrożenie technologii dynamicznych magazynów energii i ich zintegrowanie z systemem elektroenergetycznym stanowi kolejny ważny krok w rozwoju sektora energetycznego. W artykule omówiono zaawansowanie technologii nadprzewodnikowych zasobników energii oraz możliwości ich wykorzystania w elektroenergetyce, a także innych gałęziach przemysłu. Przedstawiono również perspektywy zastosowań nadprzewodnikowych zasobników energii typu SMES (Superconducting Magnetic Energy Storage) zarówno do celów komercyjnych, jak i przemysłowych oraz ich wpływ na sieć elektroenergetyczną. W artykule dokonano analizy funkcji, jakie mogą pełnić układy z wykorzystaniem nadprzewodnika w systemie elektroenergetycznym na przykładzie dostępnych wyników badań oraz symulacji przeprowadzonych min. w Chinach. Funkcjonalność układów SMES przeanalizowano w szczególności z punktu widzenia jego głównych potencjalnych korzyści związanych z poprawą stabilności systemu elektroenergetycznego oraz poprawą jakości dostarczanej energii. Uwzględniono ponadto wpływ SMES na zmniejszanie oscylacji poprzez modulację mocy czynnej, łagodzenie dynamicznych niestabilności napięcia, równoważenie obciążenia oraz dostarczanie mocy czynnej do sieci elektroenergetycznej. Oczekuje się, że ze względu na niezawodność sięgającą ponad 95%, brak strat, szybki czas rozładowania oraz wysoką jakość dostarczanej energii system z użyciem nadprzewodnikowego zasobnika w przyszłości będzie mieć kluczowe znaczenie dla rozwoju wielu dziedzin gospodarki.
This article discusses the advancement of SMES (Superconducting Magnetic Energy Storage) and its potential for use in power sector as well as in other industries. It concentrates on the analysis of the functions that can be performed by SMES and basis on the available test results as well as on the computer simulations performed among others in laboratories in China. The functionality of the SMES systems has been analyzed in particular from the point of view of its major potential benefits of improving the stability of the power supply system and improving the quality of energy delivered. This type of energy storage can become a breakthrough and could serve as a perfect alternative to standard energy storage in the future.
Źródło:
Autobusy : technika, eksploatacja, systemy transportowe; 2017, 18, 12; 1306-1310, CD
1509-5878
2450-7725
Pojawia się w:
Autobusy : technika, eksploatacja, systemy transportowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative study between two-level and three-level high-power low-voltage AC-DC converters
Autorzy:
Domino, A.
Zymmer, K.
Parchomiuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/200021.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
superconducting magnetic energy storage
SMES
power electronic interface
variant solution
nadprzewodzące magnetyczne magazynowanie energii
interfejs elektroniki energetycznej
Opis:
The article presents the analysis of the simulation test results for three variants of the power electronics used as interface between the power network and superconducting magnetic energy storage (SMES) with the following parameters: power of 250 kW, current of 500 A DC and voltage of 500 V DC. Three interface topologies were analyzed: two-level AC-DC and DC-DC converters; three-level systems and mixed systems combining a three-level active rectifier and a two-level DC-DC converter. The following criteria were considered: input and output current and voltage distortions, determined as THDi and THDu, power losses in power electronics components; cost of the semiconductor components for each topology and total cost of the interface. Results of the analysis showed that for high-power low-voltage and high-current power electronics systems, the most advantageous solution from a technical and economical perspective is a?two-level interface configuration in relation to both AC-DC and DC-DC converters.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2019, 67, 3; 583-592
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected converter topologies for interfacing energy storages with power grid
Autorzy:
Domino, A.
Zymmer, K.
Parchomiuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/201816.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
power converter
superconducting magnetic energy storage
SMES
supercapacitor energy storage
SES
distribution system
konwerter mocy
nadprzewodnikowy zasobnik energii
magazynowanie energii
superkondensator
system dystrybucji
Opis:
The paper presents different solutions applicable in power converter systems for connecting power grids with energy storage systems such as superconducting magnetic energy storage (SMES), supercapacitor energy storage (SES) or chemical batteries. Those systems are characterized by bidirectional current flow between energy storage and power grid. Two-level converters (AC-DC and DC-AC converters) dedicated for low power energy storage compatible with 3×400 V-type power grids are proposed. High power systems are connected with 3×6 kV-type power grids via transformers that adjust voltage to the particular energy storage or directly, based on multilevel power converters (AC-DC and DC-AC) or dual active bridge (DAB) systems. Solutions ensuring power grid compatibility with several energy storage systems of the same electrical parameters as well as of different voltage-current characteristics are also proposed. Selected simulation results illustrating operation of two system topologies of 200 kW power for two-level converter and neutral point clamped (NPC) three-level converter are presented.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2017, 65, 5; 579-588
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies