Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ensemble Learning" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
A comparative study on performance of basic and ensemble classifiers with various datasets
Autorzy:
Gunakala, Archana
Shahid, Afzal Hussain
Powiązania:
https://bibliotekanauki.pl/articles/30148255.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
classification
Naïve Bayes
neural network
Support Vector Machine
Decision Tree
ensemble learning
Random Forest
Opis:
Classification plays a critical role in machine learning (ML) systems for processing images, text and high -dimensional data. Predicting class labels from training data is the primary goal of classification. An optimal model for a particular classification problem is chosen based on the model's performance and execution time. This paper compares and analyzes the performance of basic as well as ensemble classifiers utilizing 10-fold cross validation and also discusses their essential concepts, advantages, and disadvantages. In this study five basic classifiers namely Naïve Bayes (NB), Multi-layer Perceptron (MLP), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF) and the ensemble of all the five classifiers along with few more combinations are compared with five University of California Irvine (UCI) ML Repository datasets and a Diabetes Health Indicators dataset from Kaggle repository. To analyze and compare the performance of classifiers, evaluation metrics like Accuracy, Recall, Precision, Area Under Curve (AUC) and F-Score are used. Experimental results showed that SVM performs best on two out of the six datasets (Diabetes Health Indicators and waveform), RF performs best for Arrhythmia, Sonar, Tic-tac-toe datasets, and the best ensemble combination is found to be DT+SVM+RF on Ionosphere dataset having respective accuracies 72.58%, 90.38%, 81.63%, 73.59%, 94.78% and 94.01%. The proposed ensemble combinations outperformed the conven¬tional models for few datasets.
Źródło:
Applied Computer Science; 2023, 19, 1; 107-132
1895-3735
2353-6977
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Integrating Vegetation Indices and Spectral Features for Vegetation Mapping from Multispectral Satellite Imagery Using AdaBoost and Random Forest Machine Learning Classifiers
Autorzy:
Saini, Rashmi
Powiązania:
https://bibliotekanauki.pl/articles/2174656.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
ensemble classifiers
Machine Learning
Random Forest
AdaBoost
vegetation mapping
vegetation indices
Opis:
Vegetation mapping is an active research area in the domain of remote sensing. This study proposes a methodology for the mapping of vegetation by integrating several vegetation indices along with original spectral bands. The Land Use Land Cover classification was performed by two powerful Machine Learning techniques, namely Random Forest and AdaBoost. The Random Forest algorithm works on the concept of building multiple decision trees for the final prediction. The other Machine Learning technique selected for the classification is AdaBoost (adaptive boosting), converts a set of weak learners into strong learners. Here, multispectral satellite data of Dehradun, India, was utilised. The results demonstrate an increase of 3.87% and 4.32% after inclusion of selected vegetation indices by Random Forest and AdaBoost respectively. An Overall Accuracy (OA) of 91.23% (kappa value of 0.89) and 88.59% (kappa value of 0.86) was obtained by means of the Random Forest and AdaBoost classifiers respectively. Although Random Forest achieved greater OA as compared to AdaBoost, interestingly AdaBoost provided better class-specific accuracy for the Shrubland class compared to Random Forest. Furthermore, this study also evaluated the importance of each individual feature used in the classification. Results demonstrated that the NDRE, GNDVI, and RTVIcore vegetation indices, and spectral bands (NIR, and Red-Edge), obtained higher importance scores.
Źródło:
Geomatics and Environmental Engineering; 2023, 17, 1; 57--74
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies