Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rhizosphere" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Screening and identification of abiotic stress-responsive efficient antifungal Pseudomonas spp. from rice rhizospheric soil
Autorzy:
Karnwal, A.
Powiązania:
https://bibliotekanauki.pl/articles/2096368.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
abiotic stress
ACC deaminase
antifungal
biofertilizer
Pseudomonas
rice rhizosphere
Opis:
Plant growth-promoting rhizobacteria (PGPR) are a collection of microorganisms often used to support and promote plant development and combat plant infectious diseases with various biological control methods. The most significant restricting factors for agricultural productivity worldwide are abiotic constraints. In the present study, seven bacterial isolates from the rice rhizosphere were selected for detailed tests based on results obtained in experiments determining the ACC deaminase synthesis and drought tolerance at !0.30 MPa PEG level. Screening results of the stress tolerance analysis of the seven isolates for elevated temperature (50°C), alkalinity (10% NaCl), and drought (-1.2 MPa) showed that abiotic stress resistance was less prevalent in DRO2, DRO13, and DRO43 isolates than in DRO17, DRO28, DRO35, and DRO51 isolates. During the study, it was observed that DRO17, DRO28, and DRO51 tended to maintain similar cell density at -0.73 MPa PEG level, as observed at -0.30 MPa stress condition. No bacterial growth was observed at higher PEG level (-1.12 MPa) for any bacterial isolate. Four strains of Pseudomonas (DRO17, DRO28, DRO35, and DRO51) exhibited salinity and temperature tolerance. Antifungal screening using the bangle method showed that DRO35 was highly antagonistic towards Rhizoctonia solani 4633, followed by Fusarium moniliforme 4223, with an inhibition of 64.3% and 48%, respectively. The DRO28 isolate exhibited 72.5% growth inhibition for Fusarium moniliforme 4223, while the DRO51 isolate showed 38.2% growth inhibition for Bipolaris hawaiiensis 2445. DRO17 reduced the growth of Rhizoctonia solani 4633, and Curvularia lunata 350 by 36% and 31%, respectively. In conclusion, the screening of bacterial strains with promising stress tolerance and antifungal characteristics could support farmers to achieve the required positive outcomes in the agriculture field.
Źródło:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2021, 102, 1; 5-19
0860-7796
Pojawia się w:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Production, characterization and iron binding affinity of hydroxamate siderophores from rhizosphere associated fluorescent Pseudomonas
Autorzy:
Deori, M.
Jayamohan, N.S.
Kumudini, B.S.
Powiązania:
https://bibliotekanauki.pl/articles/65031.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
iron-binding compound
hydroxamate siderophore
siderophore
physical parameter
rhizosphere
Pseudomonas
succinate medium
mutation
Opis:
Fluorescent Pseudomonas (FP) is a major group of plant growth promoting rhizobacteria and a well-known synthesizer of siderophores, which imparts a selective advantage on rhizosphere competence and their biocontrol traits. The present study was aimed at examining the factors affecting the production of siderophores and their potential biocontrol traits. Sixteen FP isolates were shortlisted based on their siderophore-producing ability in chrome azural S medium. The isolates were checked for variations in siderophore production under varying incubation times, temperatures, pH, iron (Fe3+) concentrations and mutagens. In addition, the iron binding affinity of siderophores, mycelial inhibition assay and plant growth promotion traits were assessed. Results showed that the siderophore production was highly influenced by the time of incubation, changes in pH, temperature and iron concentration. Chemical characterization showed that the produced siderophores were hydroxamates. Maximum siderophore production was observed at pH 7 whereas UV and EtBr exposure invariably suppressed siderophore production drastically in all isolates. All FPs from maize rhizosphere showed excellent siderophore production which could be due to the competence in strategy-II of the plant rhizosphere and significant growth inhibition on Fusarium oxysporum. Our results suggest the inclination of siderophores to iron, in terms of various criteria affecting production and the possible role of environmental mutations that affect the natural iron harvesting mechanism.
Źródło:
Journal of Plant Protection Research; 2018, 58, 1
1427-4345
Pojawia się w:
Journal of Plant Protection Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inhibitory effects of antagonistic bacteria inhabiting the rhizosphere of the sugarbeet plants, on Cercospora beticola Sacc., the causal agent of Cercospora leaf spot disease on sugarbeet
Autorzy:
Arzanlou, M.
Mousavi, S.
Bakhshi, M.
Khakvar, R.
Bandehagh, A.
Powiązania:
https://bibliotekanauki.pl/articles/66726.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
inhibitory effect
antagonistic bacteria
Bacillus
bacteria
rhizosphere
sugar-beet plant
Cercospora beticola
leaf spot disease
Pseudomonas
plant disease
Opis:
In the present study, the antagonistic capability of bacterial agents inhabiting the rhizosphere of sugarbeet plants were evaluated against Cercospora beticola Sacc. under laboratory and greenhouse conditions. After preliminary screening using the dual culture method, 14 strains with higher antagonistic capability were selected for further inhibitory assays against C. beticola. Bacterial strains were identified based on the sequence data of the small subunit-rDNA (SSU-rDNA) gene. Based on the SSU sequence data, the identity of bacterial strains were determined as Bacillus (10 strains: RB1, RB2, RB3, RB4, RB5, RB6, RB7, RB8, RB9, RB10), Paenibacillus (two strains: RP1, RP2), Enterobacter (one strain: RE), and Pseudomonas (one strain: RPs). The results obtained in this study showed that in all of the assays (dual culture, volatile and non-volatile metabolites) bacterial antagonists significantly inhibited the growth of C. beticola compared to the control. Bacillus (RB2) showed the highest inhibition rate on C. beticola in all of the assays. Based on the results of the laboratory assays, three bacterial strains RB2 (Bacillus), RPs (Pseudomonas), and RE (Paenibacillus) were selected for greenhouse assays. The experiment was designed based on a completely randomised design (CRD) with the application of antagonists prior to, simultaneously, and after inoculation with C. beticola on sugarbeet leaves. The reduction in disease severity was evaluated seven days after inoculation. The results of greenhouse assays were consistent with the results of laboratory studies. The obtained results showed that bacterial antagonists significantly reduced the disease severity when compared to the control.
Źródło:
Journal of Plant Protection Research; 2016, 56, 1
1427-4345
Pojawia się w:
Journal of Plant Protection Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The role of Pseudomonas strains and arbuscular mycorrhiza fungi as organic phosphate-solubilizing in the yield and quality improvement of strawberry (Fragaria × ananassa Duch., cv. Selva) fruit
Autorzy:
Ansari, M.H.
Hashemabadi, D.
Mahdavi, M.
Kaviani, B.
Powiązania:
https://bibliotekanauki.pl/articles/11861422.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Przyrodniczy w Lublinie. Wydawnictwo Uniwersytetu Przyrodniczego w Lublinie
Tematy:
plant
strawberry
fruit
yield
phenolic compound content
antioxidant content
flavonol
Fragaria ananassa
Pseudomonas
arbuscular mycorrhizal fungi
rhizosphere microorganism
cultivation experiment
Opis:
This study evaluated the effect of Pseudomonas strains and arbuscular mycorrhiza fungi (AMF) in enhancing strawberry yield and phenolic and antioxidant capacity on a phosphorus (P) deficient calcareous soil. The experiments were conducted in three replicates with six treatments (four Pseudomonas strains, AMF and control) and three rates of P-fertilizer (0, 75, 150 kg P ha–1). Application of higher phosphate rates decreased total antioxidant capacity, total phenolic and flavonols content, whereas AMF and Pseudomonas strains increased quality and P concentration of fruit. The use of AMF and Pseudomonas strains resulted in better quality when used along with 75 kg P ha–1. These results demonstrated that the rhizospheric microorganisms improved the quality of fruit, especially when they applied in combination with lower rates of chemical fertilizers. Therefore, application of these microorganisms in sustainable agriculture is recommended.
Źródło:
Acta Scientiarum Polonorum. Hortorum Cultus; 2018, 17, 4; 93-107
1644-0692
Pojawia się w:
Acta Scientiarum Polonorum. Hortorum Cultus
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies