Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "prognozowanie cen" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Prognozowanie ceny jednego metra kwadratowego mieszkania w Polsce
Autorzy:
Kozicki, Bartosz
Waściński, Tadeusz
Lisowska, Agnieszka
Powiązania:
https://bibliotekanauki.pl/articles/1819102.pdf
Data publikacji:
2019-05-12
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
Ceny nieruchomości
Mieszkania
Nakłady inwestycyjne
Polska
Prognozowanie cen
Opis:
W artykule omówiono problem z zakresu prognozowania ceny jednego metra kwadratowego mieszkania w Polsce w latach 1999- 2017 w ujęciu kwartalnym na podstawie informacji pierwotnych uzyskanych z Narodowego Banku Polskiego. Badania rozpoczęto od analizy i oceny szeregów czasowych. Na podstawie uzy-skanych ocen, dobrano metody prognostyczne i wykonano prognozowanie. Następnie przeprowadzono analizę zastosowanych metod prognostycznych i wybrano najlepszą.
Źródło:
Zeszyty Naukowe Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach; 2018, 46, 119; 27-33
2082-5501
Pojawia się w:
Zeszyty Naukowe Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Czy dezagregacja indeksu cen poprawia prognozy polskiej inflacji?
Forecasting Inflation Components – Does it Help to Predict Polish Inflation?
Autorzy:
Baranowski, Paweł
Mazurek, Małgorzata
Nowakowski, Maciej
Raczko, Marek
Powiązania:
https://bibliotekanauki.pl/articles/1827218.pdf
Data publikacji:
2010-03-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
prognozowanie
inflacja
subindeksy cen
agregacja
forecasting
inflation
inflation components
sectoral aggregation
Polska
Opis:
W dotychczasowych badaniach rozważa się celowość wykorzystania na cele prognostyczne danych o niższym stopniu agregacji (np. dla inflacji Hubrich, 2005; Reijer and Vlaar, 2006). W artykule badamy czy prognozowanie 12 subindeksów cen dóbr i usług konsumpcyjnych (komponentów inflacji), a następnie ich agregacja poprawia trafność prognozy inflacji. Prognozy inflacji oraz jej poszczególnych komponentów wyznaczymy przy pomocy modeli autoregresji (AR), średniej ruchomej (MA), wektorowej autoregresji (VAR) oraz autoregresji progowej (TAR). Otrzymane wyniki nie pozwalają jednoznacznie rozstrzygnąć postawionego problemu. Okazuje się, że dla modeli AR i TAR dezagregacja nie pozwala zmniejszyć błędów prognoz, dla modeli MA nie otrzymano jednoznacznych wskazań testów, zaś dla VAR zmniejsza błędy prognoz.
This paper examines whether forecasting CPI components improves CPI forecast. We exploit quarterly data for Poland, disaggregated into 12 components. We follow methodology used in previous studies for Euro Area (Hubrich, 2005; Reijer and Vlaar, 2006). AR, MA, TAR and unrestricted VAR models are estimated using recursive sample and aggregated into CPI. Using out-of-sample forecasts, these models are evaluated and compared to the benchmark -- equivalents for aggregate CPI. The evidence is mixed. VAR component-forecast outperform benchmark. Contrary to VAR, for AR and TAR models we do not find substantial gain from using disaggregated data. Results for MA models are not robust. Moreover, it seems that results for AR- and VAR-based forecasts are comparable to consensus forecast.
Źródło:
Przegląd Statystyczny; 2010, 57, 1; 17-33
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies