- Tytuł:
-
Numerical efficiency of iterative solvers for the poisson equation using equation using computer cluster
Efektywność numeryczna iteracyjnych technik rozwiązania równania Poissona na klastrze komputerowym - Autorzy:
- Gościk, J.
- Powiązania:
- https://bibliotekanauki.pl/articles/341125.pdf
- Data publikacji:
- 2008
- Wydawca:
- Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
- Tematy:
-
metody iteracyjne
metoda różnic skończonych
równanie Poissona
iterative solvers
finite difference method
Poisson equation - Opis:
-
We present a set of numerical results which were obtained by systematic investigation of eciency of compilers implemented on Mordor cluster (http://mordor.wi.pb.edu.pl) running Linux distribution CentOS 4, kernel ver. 2.6. As a generic problem the finite dierence based framework for solution of the Poisson equation has been taken (with discretization on grid topologically equivalent to a Cartesian grid). The PDE converted to an algebraic system of equations is solved by adopting so-called nonstationary, Krylov type, iterative methods: conjugate gradient (CG), bi-conjugate gradient (Bi-CG), conjugate gradient squared (CGS) and bi-conjugate gradient stabilized (Bi-CGSTAB). The code was implemented using two dierent compilers, such as gcc (GNU Compiler Collection - ver. 3.4.6) and icc (Intel C++ Compiler - ver. 9.1). All performances reported were done with the Xeon 3.2 GHz processor that has own memory 2 GB.
Przedstawiono wstępne wyniki badania efektywności sekwencyjnego przetwarzania danych w algorytmach rozwiązywania dużych układów równań liniowych na klastrze obliczeniowym Mordor (http://mordor.wi.pb.edu.pl) zarządzanym przez system operacyjny Linux (dystrybucja CentOS 4, wersja jądra 2.6). Szczególną uwagę zwrócono na wpływ doboru opcji optymalizacyjnych w dost˛epnych kompilatorach na wydajność obliczeniową kodu komputerowego. Jako bazowe do rozważań przyjęto duże układy równań liniowych z macierzą współczynników o strukturze rzadkiej. Takie układy równań generowane są w procedurze numerycznego rozwiązania równania Poissona, którego aproksymację otrzymuje się na gruncie metody różnic skończonych (dyskretyzacja na uporządkowanej siatce różnicowej w kartezjańskim układzie współżędnych prostokątnych). Cząstkowe równanie różniczkowe przekształcone do postaci układu równań liniowych rozwiązano z wykorzystaniem czterech metod iteracyjnych typu Kryłowa: gradientów sprzężonych (CG), gradientów bisprzężonych (Bi-CG), kwadratowego gradientu sprzężonego (CGS) oraz stabilizowaną metodą wzajemnie sprzężonych gradientów (Bi-CGSTAB). Metody te wdrożono generując własne oprogramowanie oraz zaimplementowano z wykorzystaniem dwóch różnych kompilatorów gcc (GNU Compiler Collection - wesja 3.4.6) oraz icc (Intel C++ Compiler - wersja 9.1). Wyniki wszystkich testów efektywności obliczeniowej uzyskano rozwiązując sformułowane zagadnienie testowe przy użyciu jednego procesora Xeon 3.2 Ghz wchodzącego w skład jednego węzła obliczeniowego z pamięcią własną 2GB. - Źródło:
-
Zeszyty Naukowe Politechniki Białostockiej. Informatyka; 2008, 3; 39-52
1644-0331 - Pojawia się w:
- Zeszyty Naukowe Politechniki Białostockiej. Informatyka
- Dostawca treści:
- Biblioteka Nauki