Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Particle Swarm Optimization" wg kryterium: Temat


Wyświetlanie 1-11 z 11
Tytuł:
Traffic fatalities prediction based on support vector machine
Autorzy:
Li, T.
Yang, Y.
Wang, Y.
Chen, C.
Yao, J.
Powiązania:
https://bibliotekanauki.pl/articles/223743.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
traffic accident
support vector machine
SVM
particle swarm optimization (PSO)
PSO
prediction model
optimal parameters
wypadek drogowy
Particle Swarm Optimization
model prognostyczny
optymalne parametry
Opis:
To effectively predict traffic fatalities and promote the friendly development of transportation, a prediction model of traffic fatalities is established based on support vector machine (SVM). As the prediction accuracy of SVM largely depends on the selection of parameters, Particle Swarm Optimization (PSO) is introduced to find the optimal parameters. In this paper, small sample and nonlinear data are used to predict fatalities of traffic accident. Traffic accident statistics data of China from 1981 to 2012 are chosen as experimental data. The input variables for predicting accident are highway mileage, vehicle number and population size while the output variables are traffic fatality. To verify the validity of the proposed prediction method, the back-propagation neural network (BPNN) prediction model and SVM prediction model are also used to predict the traffic fatalities. The results show that compared with BPNN prediction model and SVM model, the prediction model of traffic fatalities based on PSO-SVM has higher prediction precision and smaller errors. The model can be more effective to forecast the traffic fatalities. And the method using particle swarm optimization algorithm for parameter optimization of SVM is feasible and effective. In addition, this method avoids overcomes the problem of “over learning” in neural network training progress.
Źródło:
Archives of Transport; 2016, 39, 3; 21-30
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Particle swarm optimization based fuzzy clustering approach to identify optimal number of clusters
Autorzy:
Chen, M.
Ludwig, S. A.
Powiązania:
https://bibliotekanauki.pl/articles/91549.pdf
Data publikacji:
2014
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
optimization
fuzzy clustering
cluster analysis
particle swarm optimization (PSO)
PSO
fuzzy Sammon mapping
Sammon mapping
Opis:
Fuzzy clustering is a popular unsupervised learning method that is used in cluster analysis. Fuzzy clustering allows a data point to belong to two or more clusters. Fuzzy c-means is the most well-known method that is applied to cluster analysis, however, the shortcoming is that the number of clusters need to be predefined. This paper proposes a clustering approach based on Particle Swarm Optimization (PSO). This PSO approach determines the optimal number of clusters automatically with the help of a threshold vector. The algorithm first randomly partitions the data set within a preset number of clusters, and then uses a reconstruction criterion to evaluate the performance of the clustering results. The experiments conducted demonstrate that the proposed algorithm automatically finds the optimal number of clusters. Furthermore, to visualize the results principal component analysis projection, conventional Sammon mapping, and fuzzy Sammon mapping were used.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2014, 4, 1; 43-56
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the hybridization of the artificial Bee Colony and Particle Swarm Optimization Algorithms
Autorzy:
El-Abd, M.
Powiązania:
https://bibliotekanauki.pl/articles/91658.pdf
Data publikacji:
2012
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
Artificial Bee Colony Algorithm
ABC
particle swarm optimization (PSO)
PSO
hybridization
hybrid algorithm
CEC05
Opis:
In this paper we investigate the hybridization of two swarm intelligence algorithms; namely, the Artificial Bee Colony Algorithm (ABC) and Particle Swarm Optimization (PSO). The hybridization technique is a component-based one, where the PSO algorithm is augmented with an ABC component to improve the personal bests of the particles. Three different versions of the hybrid algorithm are tested in this work by experimenting with different selection mechanisms for the ABC component. All the algorithms are applied to the well-known CEC05 benchmark functions and compared based on three different metrics, namely, the solution reached, the success rate, and the performance rate.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2012, 2, 2; 147-155
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Using particle swarm optimization to accurately identify syntactic phrases in free text
Autorzy:
Tambouratzis, G.
Powiązania:
https://bibliotekanauki.pl/articles/91802.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
parsing of natural language
machine translation
syntactically-derived phrasing
particle swarm optimization (PSO)
PSO
parameter optimization
Adaptive PSO
AdPSO
Opis:
The present article reviews the application of Particle Swarm Optimization (PSO) algorithms to optimize a phrasing model, which splits any text into linguistically-motivated phrases. In terms of its functionality, this phrasing model is equivalent to a shallow parser. The phrasing model combines attractive and repulsive forces between neighbouring words in a sentence to determine which segmentation points are required. The extrapolation of phrases in the specific application is aimed towards the automatic translation of unconstrained text from a source language to a target language via a phrase-based system, and thus the phrasing needs to be accurate and consistent to the training data. Experimental results indicate that PSO is effective in optimising the weights of the proposed parser system, using two different variants, namely sPSO and AdPSO. These variants result in statistically significant improvements over earlier phrasing results. An analysis of the experimental results leads to a proposed modification in the PSO algorithm, to prevent the swarm from stagnation, by improving the handling of the velocity component of particles. This modification results in more effective training sequences where the search for new solutions is extended in comparison to the basic PSO algorithm. As a consequence, further improvements are achieved in the accuracy of the phrasing module.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 1; 63-77
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimizing the Bit-flipping Method for Decoding Low-density Parity-check Codes in Wireless Networks by Using the Artificial Spider Algorithm
Autorzy:
Ghaffoori, Ali Jasim
Abdul-Adheem, Wameedh Riyadh
Powiązania:
https://bibliotekanauki.pl/articles/2055251.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
low-density parity-check
LDPC
hard-decision Bit-Flipping
BF
particle swarm optimization
PSO
artificial spider algorithm
ASA
Opis:
In this paper, the performance of Low-Density Parity-Check (LDPC) codes is improved, which leads to reduce the complexity of hard-decision Bit-Flipping (BF) decoding by utilizing the Artificial Spider Algorithm (ASA). The ASA is used to solve the optimization problem of decoding thresholds. Two decoding thresholds are used to flip multiple bits in each round of iteration to reduce the probability of errors and accelerate decoding convergence speed while improving decoding performance. These errors occur every time the bits are flipped. Then, the BF algorithm with a low-complexity optimizer only requires real number operations before iteration and logical operations in each iteration. The ASA is better than the optimized decoding scheme that uses the Particle Swarm Optimization (PSO) algorithm. The proposed scheme can improve the performance of wireless network applications with good proficiency and results. Simulation results show that the ASA-based algorithm for solving highly nonlinear unconstrained problems exhibits fast decoding convergence speed and excellent decoding performance. Thus, it is suitable for applications in broadband wireless networks.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 1; 109--114
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wild Image Retrieval with HAAR Features and Hybrid DBSCAN Clustering For 3D Cultural Artefact Landmarks Reconstruction
Autorzy:
Pitchandi, Perumal
Powiązania:
https://bibliotekanauki.pl/articles/2201730.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
outliers removal
culturalartefact objects
3D reconstruction
particle swarm optimization
PSO
spatial clustering
density based spatial clustering
noise clustering algorithm
Opis:
In this digital age large amounts of information, images and videos can be found in the web repositories which accumulate this information. These repositories include personal, historic, cultural, and business event images. Image mining is a limited field in research where most techniques look at processing images instead of mining. Very limited tools are found for mining these images, specifically 3D (Three Dimensional) images. Open source image datasets are not structured making it difficult for query based retrievals. Techniques extracting visual features from these datasets result in low precision values as images lack proper descriptions or numerous samples exist for the same image or images are in 3D. This work proposes an extraction scheme for retrieving cultural artefact based on voxel descriptors. Image anomalies are eliminated with a new clustering technique and the 3D images are used for reconstructing cultural artefact objects. Corresponding cultural 3D images are grouped for a 3D reconstruction engine’s optimized performance. Spatial clustering techniques based on density like PVDBSCAN (Particle Varied Density Based Spatial Clustering of Applications with Noise) eliminate image outliers. Hence, PVDBSCAN is selected in this work for its capability to handle a variety of outliers. Clustering based on Information theory is also used in this work to identify cultural object’s image views which are then reconstructed using 3D motions. The proposed scheme is benchmarked with DBSCAN (Density-Based Spatial Clustering of Applications with Noise) to prove the proposed scheme’s efficiency. Evaluation on a dataset of about 31,000 cultural heritage images being retrieved from internet collections with many outliers indicate the robustness and cost effectiveness of the proposed method towards a reliable and just-in-time 3D reconstruction than existing state-of-the-art techniques.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 3; 269--281
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on the influence of airflow resistance of layered porous structures on the sound absorption coefficient
Autorzy:
Flach, Artur
Powiązania:
https://bibliotekanauki.pl/articles/24201972.pdf
Data publikacji:
2022
Wydawca:
Politechnika Poznańska. Instytut Mechaniki Stosowanej
Tematy:
airflow resistance
anechoic wedges
transfer matrix method
optimization
PSO
particle swarm optimization
opór przepływu powietrza
kliny akustyczne
metoda macierzy przejścia
optymalizacja
optymalizacja roju cząstek
Opis:
The paper presents the research on the influence of airflow resistance on the sound absorption coefficient of layered porous structures. For the calculation of the sound absorption coefficient, the models of layered sound-absorbing structures were developed with the use of numerical computational models. Using the developed models, optimization was carried out to maximize the average sound absorption coefficient of the structures for a given frequency range. As a result of the research, the dependence of the change in airflow resistance for the successive layers of the material was determined. The results of the work will be particularly useful in the design of wedges used in anechoic chambers.
Źródło:
Vibrations in Physical Systems; 2022, 33, 3; art. no. 2022311
0860-6897
Pojawia się w:
Vibrations in Physical Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of inertia weight on the Particle Swarm Optimization algorithm
Autorzy:
Cekus, D.
Skrobek, D.
Powiązania:
https://bibliotekanauki.pl/articles/122644.pdf
Data publikacji:
2018
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
particle swarm optimization (PSO)
PSO algorithm
inertia weight
trajectory
optymalizacja rojem cząstek
PSO
algorytm PSO
metoda PSO
algorytm optymalizacji rojem cząstek
trajektoria
współczynnik wagowy
Opis:
The paper presents the use of the Particle Swarm Optimization (PSO) algorithm to find the shortest trajectory connecting two defined points while avoiding obstacles. The influence of the inertia weight and the number of population adopted in the first iteration of the PSO algorithm was examined for the length of the sought trajectory. Simulation results showed that the proposed method achieved significant improvement compared to the linearly decreasing method technique that is widely used in literature.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2018, 17, 4; 5-11
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computationally efficient nonlinear model predictive controller using parallel particle swarm optimization
Autorzy:
Diwan, Supriya P.
Deshpande, Shraddha S.
Powiązania:
https://bibliotekanauki.pl/articles/2173694.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nonlinear model predictive control
particle swarm optimization
PSO
fast dynamic systems
rotary inverted pendulum
divide approach
conquer approach
kontrola predykcyjna modelu nieliniowa
optymalizacja roju cząstek
system dynamiczny szybki
wahadło obrotowe odwrócone
Opis:
As nonlinear optimization techniques are computationally expensive, their usage in the real-time era is constrained. So this is the main challenge for researchers to develop a fast algorithm that is used in real-time computations. This work proposes a fast nonlinear model predictive control approach based on particle swarm optimization for nonlinear optimization with constraints. The suggested algorithm divide and conquer technique improves computing speed and disturbance rejection capability, demonstrating its suitability for real-time applications. The performance of this approach under constraints is validated using a highly nonlinear fast and dynamic real-time inverted pendulum system. The solution presented through work is computationally feasible for smaller sampling times and it gives promising results compared to the state of art PSO algorithm
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 4; art. no. e140696
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Power quality management in electrical grid using SCANN controller-based UPQC
Autorzy:
Varadharajan, Balaji
Subramanian, Chitra
Powiązania:
https://bibliotekanauki.pl/articles/2173547.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
SCANN
single comprehensive artificial neural network
UPQC
unified power quality conditioner
total harmonic distortion
particle swarm optimization
POS
sztuczna sieć neuronowa pojedyncza kompleksowa
zunifikowany kondycjoner jakości energii
współczynnik zawartości harmonicznych
optymalizacja roju cząstek
PSO
Opis:
The electrical grid integration takes great attention because of the increasing population in the nonlinear load connected to the power distribution system. This manuscript deals with the power quality issues and mitigations associated with the electrical grid. The proposed single comprehensive artificial neural network (SCANN) controller with unified power quality conditioner (UPQC) is modelled in MATLAB Simulink environment. It provides series and shunt compensation that helps mitigate voltage and current distortion at the end of the distribution system. Initially, four proportional integral (PI) controllers are used to control the UPQC. Later the trained SCANN controller replaces four PI Controllers for better control action. PI and SCANN controllers’ simulation results are compared to find the optimal solutions. A prototype model of SCANN controller is constructed and tested. The test results show that the SCANN based UPQC maintains grid voltage and current magnitude within permissible limits under fluctuating conditions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; e140257, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Feature optimization using a two-tier hybrid optimizer in an Internet of Things network
Autorzy:
Agrawal, Akhileshwar Prasad
Singh, Nanhay
Powiązania:
https://bibliotekanauki.pl/articles/15548024.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
IoT
Internet of Things
anomaly mitigation
GWO
Gray Wolf Optimizer
feature optimization
PSO
particle swarm optimizer
Internet Rzeczy
optymalizacja funkcji
Opis:
The growing use of the Internet of Things (IoT) in smart applications necessitates improved security monitoring of IoT components. The security of such components is monitored using intrusion detection systems which run machine learning (ML) algorithms to classify access attempts as anomalous or normal. However, in this case, one of the issues is the large length of the data feature vector that any ML or deep learning technique implemented on resource-constrained intelligent nodes must handle. In this paper, the problem of selecting an optimal-feature set is investigated to reduce the curse of data dimensionality. A two-layered approach is proposed: the first tier makes use of a random forest while the second tier uses a hybrid of gray wolf optimizer (GWO) and the particle swarm optimizer (PSO) with the k-nearest neighbor as the wrapper method. Further, differential weight distribution is made to the local-best and global-best positions in the velocity equation of PSO. A new metric, i.e., the reduced feature to accuracy ratio (RFAR), is introduced for comparing various works. Three data sets, namely, NSLKDD, DS2OS and BoTIoT, are used to evaluate and validate the proposed work. Experiments demonstrate improvements in accuracy up to 99.44%, 99.44% and 99.98% with the length of the optimal-feature vector equal to 9, 4 and 8 for the NSLKDD, DS2OS and BoTIoT data sets, respectively. Furthermore, classification improves for many of the individual classes of attacks: denial-of-service (DoS) (99.75%) and normal (99.52%) for NSLKDD, malicious control (100%) and DoS (68.69%) for DS2OS, and theft (95.65%) for BoTIoT.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 2; 313--326
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-11 z 11

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies