- Tytuł:
-
Klasyfikator lokalnych uszkodzeń zębów kół przekładni, wykorzystujący sieci neuronowe MLP oraz ciągłą transformatę falkową
Classifier of fault diagnosis in a gear wheel which used MLP neural network and continuous wavelet transform - Autorzy:
- Czech, P.
- Powiązania:
- https://bibliotekanauki.pl/articles/257799.pdf
- Data publikacji:
- 2007
- Wydawca:
- Sieć Badawcza Łukasiewicz - Instytut Technologii Eksploatacji - Państwowy Instytut Badawczy
- Tematy:
-
diagnostyka
przekładnia zębata
metoda sztucznej inteligencji
sztuczna sieć neuronowa
MLP
diagnostic testing
toothed gear
artificial intelligent methods
PNN - Opis:
-
W artykule przedstawiono wyniki prób mających na celu budowę klasyfikatora lokalnych uszkodzeń zębów kół przekładni, opartego na sztucznych sieciach neuronowych. W badaniach wykorzystano sieci neuronowe typu perceptron wielowarstwowy (MLP). Obiekt badań stanowiła przekładnia zębata o zębach prostych, pracująca na stanowisku mocy krążącej FZG. Badaniami objęto przekładnie z kołami bez uszkodzeń oraz z lokalnymi uszkodzeniami zębów w postaci pęknięcia u podstawy zęba i wykruszenia wierzchołka zęba. W artykule zaproponowano budowę deskryptorów lokalnych uszkodzeń zębów kół wykorzystując do tego celu sygnały drganiowe poddane odpowiedniej filtracji oraz przetwarzaniu.
The paper presents the results of an experimental application of an artificial neural network as a classifier of the degree of the cracking root and the chipping tip of the tooth in a gear wheel. The neural classifier was based on the artificial neural network of an MLP type (Multi-Layer Perceptions). The input data for the classifier was in the form of a matrix composed of statistical measures, obtained from continuous wavelet analysis. In order to create a basis of knowledge, a stand testing was done. The experimental tests were conducted in the system operating as circulating power test rigs. As a result, the method of standard construction for diagnostic systems based on artificial intelligence was also worked out by means of defining the ways of filtrating and analysing of signals and diagnostic measurements. Additionally, the choice of the architecture and algorithm of teaching artificial neural networks used to classify the state of an object was researched. - Źródło:
-
Problemy Eksploatacji; 2007, 4; 61-81
1232-9312 - Pojawia się w:
- Problemy Eksploatacji
- Dostawca treści:
- Biblioteka Nauki