- Tytuł:
- Mechanical assessment of a hip joint stem model made of a PEEK/carbon fibre composite under compression loading
- Autorzy:
-
Dworak, M.
Błażewicz, S. - Powiązania:
- https://bibliotekanauki.pl/articles/307412.pdf
- Data publikacji:
- 2016
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
staw biodrowy
proteza
włókna węglowe
biomateriały
hip prosthesis
carbon fibres
PEEK matrix
stress shielding
composite stem - Opis:
- Purpose: The aim of the work was to manufacture a composite stem model consisting of carbon fibres (CF) and polyether ether ketone (PEEK) and to perform the surface strain and stress distributions in the stem-femoral bone model under compression loading. Methods: Composite stems differing in elasticity were prepared. Three types of composite stems having different arrangements of carbon fibre reinforcements (carbon fibre roving, carbon fibre sleeves and their combinations) in the polymer matrix were made. The stems were cementless fixed in the femoral bone model channel or with the use of the polymer bone cement (PMMA). Mechanical behaviour of composite stems under compression loading was compared with a metallic stem by strain gauge measurements at different parts of stem/bone model systems. Results: The values of stresses in the proximal part of the bone model for cemented and cementless fixations of the composite stem in the femoral bone channel were higher than those noted for the metallic stem. The increase in proximal bone stress was almost similar for both types of fixation of composite stems, i.e., cemented and cementless fixed stems. Conclusions: The optimal range of mechanical stiffness, strengths and work up to fracture was obtained for composite stem made of carbon fibre sleeves and carbon fibres in the form of roving. Depending on the elasticity of the composite stem model, an increase in the stress in the proximal part of femoral bone model of up to 40% was achieved in comparison with the metallic stem.
- Źródło:
-
Acta of Bioengineering and Biomechanics; 2016, 18, 2; 71-79
1509-409X
2450-6303 - Pojawia się w:
- Acta of Bioengineering and Biomechanics
- Dostawca treści:
- Biblioteka Nauki